Visualization defined & motivated
• computer-based visualization systems
 – provide visual representations of datasets
 – designed to help people carry out tasks more effectively.
• suitable when
 – there is a need to augment human capabilities
 – rather than replace people with computational decision-making methods

Nested model: Four levels of visualization design
• domain situation
 – who are the target users?
• abstraction
 – translate from specifics of domain to vocabulary of vis
 • what is shown?
 • why is the user looking at it?
• idiom
 – how is it shown?
 • visual encoding idiom: how to draw
 • interaction idiom: how to manipulate
• algorithm
 – efficient computation

Why is validation difficult?
• different ways to get it wrong at each level
 • Domain situation: You misunderstood their needs
 • Data/task abstraction: You’re showing them the wrong thing
 • Visual encoding/interaction idiom: They may show it right, but it’s the wrong thing
 • Algorithm: Your code is too slow

Evaluation: broadly interpreted
• methods from many fields, qualitative & quantitative
 – controlled experiments in lab, field studies of deployed systems

Problem-driven work
• design studies
 – in collaboration with target users
 • real data, real tasks
 • intensive requirements analysis
 • iterative refinement
 • deploy tools/systems
 • typical evaluation: field studies
 • pre-design & post-deployment, often qualitative
 • opportunistic collaboration
 • many domains, industry & academia

Design studies: domains
• many domains
 – fisheries, in-car networks, journalism, ...
 – genomics
 – Harvard Med School, BC Cancer, UBC Biodiversity, Agilent, ...
 – log analysis
 – Google web search, AT&T web hosting, Mobify e-commerce
 – building & energy usage

Courses
• grad course CPSC 547: next offering Sep 2025
• new-ish ugrad course: CPSC 447
 – (first three years was CPSC 436V)
 – current offering now (Sep 2023), then Jan 2025
 – 4th year majors course
 • theory: visualization foundations
 • tooling: D3.js
 • prereq: CPSC 310 (for JavaScript)
 • HCI not required, but very helpful

Ocupado design study
Ocupado: Visualizing Location-Based Counts
Over Time Across Buildings
Michael Oppenworth
Tamara Munzner

Technique-driven work
• scalable algorithms & systems
 – typical evaluation: computational benchmarks
• new visual encoding & interaction techniques
 – typical evaluation: controlled experiments with people (quant)
 – typical evaluation: qualitative assessment
• areas
 – graph drawing, dimensionality reduction
 – human-in-the-loop curation/assessment of ML results

TimelineCurator

More info
• book (free through UBC library)
http://www.cs.ubc.ca/~tmm/vadbook
• papers, videos, software, talks, courses
http://www.cs.ubc.ca/group/infovis
http://www.cs.ubc.ca/~tmm