InfoVis Group Research

Tamara Munzner
Department of Computer Science
University of British Columbia

CPSC 344 Outro
30 Nov 2021

http://www.cs.ubc.ca/~tmm/talks.html#344-outro21
Visualization defined & motivated

• computer-based visualization systems
 – provide visual representations of datasets
 – designed to help people carry out tasks more effectively.

• suitable when
 – there is a need to augment human capabilities
 – rather than replace people with computational decision-making methods
Nested model: Four levels of visualization design

- **domain situation**
 - who are the target users?

- **abstraction**
 - translate from specifics of domain to vocabulary of vis
 - **what** is shown? *data* abstraction
 - **why** is the user looking at it? *task* abstraction

- **idiom**
 - **how** is it shown?
 - **visual encoding** idiom: how to draw
 - **interaction** idiom: how to manipulate

- **algorithm**
 - efficient computation

Why is validation difficult?

- different ways to get it wrong at each level

- Domain situation
 You misunderstood their needs

- Data/task abstraction
 You’re showing them the wrong thing

- Visual encoding/interaction idiom
 The way you show it doesn’t work

- Algorithm
 Your code is too slow

Evaluation: broadly interpreted

• methods from many fields, qualitative & quantitative
 – controlled experiments in lab, field studies of deployed systems

anthropology/ethnography

design

computer science

HCI/psychology

anthropology/ethnography

Domain situation
Observe target users using existing tools

Data/task abstraction

Visual encoding/interaction idiom
Justify design with respect to alternatives

Algorithm
Measure system time/memory
Analyze computational complexity

Analyze results qualitatively

Measure human time with lab experiment (lab study)

Observe target users after deployment (field study)

Measure adoption

problem-driven work

technique-driven work

classical foundations

evaluation

quant
qual
mixed
Problem-driven work

- design studies
 - in collaboration with target users
 - real data, real tasks
 - intensive requirements analysis
 - iterative refinement
 - deploy tools/systems
 - typical evaluation: field studies
 - pre-design & post-deployment, often qualitative
- opportunistic collaboration
 - many domains, industry & academia
Design studies: domains

• many domains
 – fisheries, in-car networks, journalism, ...

• genomics
 – Harvard Med School, BC Cancer, UBC Biodiversity, Agilent, ...

• log analysis
 – Google web search, AT&T web hosting, Mobify e-commerce
 – building & energy usage
Ocupado design study

Ocupado: Visualizing Location-Based Counts Over Time Across Buildings

Michael Oppermann
Tamara Munzner

https://youtu.be/KcwjVK8eUdw
Technique-driven work

• scalable algorithms & systems
 – typical evaluation: computational benchmarks

• new visual encoding & interaction techniques
 – typical evaluation: controlled experiments with people (quant)
 – typical evaluation: qualitative assessment

• areas
 – graph drawing, dimensionality reduction
 – human-in-the-loop curation/assessment of ML results
Grad course: CPSC 547

• teaching now, final presentations Wed Dec 10
 – 2-5:30pm, FSC 2330, you're invited!
 – topics https://www.cs.ubc.ca/~tmm/courses/547-21/projects.html
 • Hood Hunter:A House Hunter’s Guide to Narrowing Neighbourhoods
 • Drinking Behavior Patterns in Dairy Cattle
 • Multiscale Visualization of Pathogenic Structural Variants
 • A New City Map
 • What Can We Learn From User-Movie Ratings?
 • SoundMap:A Visualization Tool to Explore Multi-Attribute Sound Data
 • MultiModalTopicExplorer:Topic modeling for exploring multi-modal data from asynchronous online conversations
 • PartViz:Visualizing Graph Partitioners
 • Explorify:A Personalized Interactive Visualization Tool for Spotify Listening History
 • Necklace Maps for COVID-19 Visualization
 • Definitions and Aspects of Visualization Literacy: A Survey
 • Course Friction Explorer:Visualizing and Validating Indicators of Student Struggle
 • Visualizing Android Features Through Time
 • Visualizing the Run Time Execution of Command Patterns
Ugrad course: CSPC 436V

- new-ish, third offering is Jan 2022
 - previous offering
 https://www.students.cs.ubc.ca/~cs-436v/21Jan/

- 4th year majors course
 - theory: visualization foundations
 - tooling: D3.js
 - prereq: CPSC 310
 - HCI not required, but very helpful
 - just 5 spots left!
More info

• book (free through UBC library)
 http://www.cs.ubc.ca/~tmm/vadbook

• papers, videos, software, talks, courses
 http://www.cs.ubc.ca/group/infovis
 http://www.cs.ubc.ca/~tmm

www.cs.ubc.ca/~tmm/talks.html#344-outro21