Visualization defined & motivated
• computer-based visualization systems
 – provide visual representations of datasets
 – designed to help people carry out tasks more effectively.
• suitable when
 – there is a need to augment human capabilities
 – rather than replace people with computational decision-making methods

Nested model: Four levels of visualization design
• domain situation
 – who are the target users?
• abstraction
 – translate from specifics of domain to vocabulary of vis
 • what is shown?
 • abstraction
 • idiom
 – how is it shown?
 • visual encoding idiom: how to draw
 • interaction idiom: how to manipulate
• algorithm
 – efficient computation

Why is validation difficult?
• different ways to get it wrong at each level
 – theory, visualization foundations
 – tooling: D3.js
 – pre req: CPSC 310
 – HCI not required, but very helpful
 – just 5 spots left!

Evaluation: broadly interpreted
• methods from many fields, qualitative & quantitative
 – controlled experiments in lab, field studies of deployed systems
 – tooling: D3.js
 – theoretical foundations
 – rapid prototyping
 – second-hand data
 – in collaboration with target users
 – top-down/layered: design prototypes
 – bottom-up: data-driven design

Evaluation: widely interpreted
• methods from many fields, qualitative & quantitative
 – controlled experiments in lab, field studies of deployed systems
 – tooling: D3.js
 – theoretical foundations
 – rapid prototyping
 – second-hand data
 – in collaboration with target users
 – top-down/layered: design prototypes
 – bottom-up: data-driven design

Problem-driven work
• design studies
 – in collaboration with target users
 • real data, real tasks
 • intensive requirements analysis
 • iterative refinement
 • deploy tools/systems
 • typical evaluation: field studies
 – pre-design & post-deployment, often qualitative
 – opportunistic collaboration
 – many domains, industry & academia

Technique-driven work
• scalable algorithms & systems
 – new visual encoding & interaction techniques
 • typical evaluation: computational benchmarks
 • typical evaluation: controlled experiments with people (quant)
 • typical evaluation: qualitative assessment
• areas
 – graph drawing, dimensionality reduction
 – human-in-the-loop curation/assessment of ML results

Design studies: domains
• many domains
 – fisheries, in-car networks, journalism, ...
 – genomics
 – Harvard Med School, BC Cancer, UBC Biodiversity, Aglient, ...
 – log analysis
 – Google web search, AT&T web hosting, Mobile e-commerce
 – building & energy usage

Ocupado design study
Ocupado: Visualizing Location-Based Counts
Over Time Across Buildings
Michael Cyganowski
Tamara Munzner

Ugrad course: CPSC 436V
• new-ish, third offering is Jan 2022
 – previous offering
 https://www.students.cs.ubc.ca/~cs-436v/21Jan/
• 4th year majors course
 – theory: visualization foundations
 – tooling: D3.js
 – prereq: CPSC 310
 – HCI not required, but very helpful
 – just 5 spots left!