InfoVis Group Research

Tamara Munzner Department of Computer Science

University of British Columbia

CPSC 344 Outro 2 Dec 2020

http://www.cs.ubc.ca/~tmm/talks.html#344-outro20

<u>@tamaramunzner</u>

Visualization (vis) defined & motivated

Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

Nested model: Four levels of visualization design

- domain situation
 - -who are the target users?
- abstraction
 - translate from specifics of domain to vocabulary of vis
 - what is shown? data abstraction
 - **why** is the user looking at it? **task** abstraction
- idiom
 - -how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate
- algorithm
 - efficient computation

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

[A Multi-Level Typology of Abstract Visualization Tasks. Brehmer and Munzner. IEEE TVCG 19(12):2376-2385, 2013 (Proc. InfoVis 2013).]

Why is validation difficult?

different ways to get it wrong at each level

Domain situation You misunderstood their needs **Data/task abstraction** You're showing them the wrong thing Wisual encoding/interaction idiom The way you show it doesn't work Algorithm Your code is too slow

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

Evaluation: broadly interpreted

- methods from many fields, qualitative & quantitative
 - controlled experiments in lab, field studies of deployed systems

[A Nested Model of Visualization Design and Validation. Munzner. IEEE TVCG 15(6):921-928, 2009 (Proc. InfoVis 2009).]

Tamara Munzner, UBC CS, InfoVis Research

Problem-driven work

• design studies

- in collaboration with target users
 - real data, real tasks
 - intensive requirements analysis
- iterative refinement
 - deploy tools/systems
- typical evaluation: field studies
- my strategy: opportunistic collaboration
 - many domains
 - both industrial and academic partners

Design studies

- log analysis
 - Google: web users
 - AT&T: web hosting server farms
 - Mobify: e-commerce clickstreams
 - EnerNOC: building energy management
 - Sensible Building Science: building usage patterns
- genomics
 - Harvard Med School: comparative functional genomics
 - Harvard/MIT: synteny relationships between species
 - BC Cancer: sequence variants in gene context
 - UBC Biodiversity: comparing gene/species phylogenetic trees
 - UBC/Agilent: protein-protein interaction networks
 - UBC/BCCDC: genomic epidemiology

Design studies

- many other domains
 - SFU/DFO: fisheries
 - BMW: in-car networks
 - Associated Press: large document collections for journalists

Technique-driven work

• scalable algorithms & systems

- typical evaluation: computational benchmarks

- new visual encoding & interaction techniques
 - typical evaluation: controlled experiments on human subjects
 - typical evaluation: qualitative assessment
- areas
 - graph drawing, dimensionality reduction
 - human-in-the-loop curation of machine learning results
 - Tableau:VizCommender recommendation systems
 - TimeLineCurator

Evaluation

- quantitative & qualitative & mixed methods
- field studies
 - pre-design & post-deployment
- lab studies
 - in person & crowdsourced
- data studies
 - few people (experts), many datasets

Evaluation experiments: Dim. reduction

Т F

Ε

Ρ

Melanie Tory

Points vs landscapes for dimensionally reduced data

Guidance on DR &

Michael Sedlmair **Melanie** Tory

scatterplot choices

- A many classes

• 🔅 sifered

- 🔴 atternet

- 🔊 attened

Taxonomy of cluster separation factors

Evaluation in the field: Dim. reduction

Matt Brehmer

Michael Sedlmair

Melanie Tory

Stephen Ingram

Т

F

Ε

Ρ

13

Theoretical foundations

- Type Pidalls
 - Design in Technique's Clothing
 - + Application Bingo versus Design Study
 - All That Coding Means I Deserve A Systems Paper

Papers Process & Pitfalls

- Nother Fash Nor Fow1
 Visual Encoding Pithds
 - + Unjustified Visual Encoding
 - Hammer in Searth Of Nail
 - + 2D Good, 3D Better
 - + Color Cacophoty
 - Contraction of the last

Unfotened By Time
 Fear and Loathing of Complexity

Roults Pitfalls

- + Steaw Man Comparison + Tiny Toy Datasets
- But My Friends Liked It
- Unjostified Tasks
- Writing Style Pittath
 - + Deadly Detail Dump

Nested Model

Abstract Tasks

Matt Brehmer

hand INFORMATION LOCATION COmputer

Design Study Methodology

Michael Sedlmair Miriah Meyer

More info

- book (free through UBC library) <u>http://www.cs.ubc.ca/~tmm/vadbook</u>
- papers, videos, software, talks, courses <u>http://www.cs.ubc.ca/group/infovis</u> <u>http://www.cs.ubc.ca/~tmm</u>

Visualization Analysis & Design

www.cs.ubc.ca/~tmm/talks.html#344-outro20

<u>@tamaramunzner</u>

Grad course: CPSC 547

- teaching now
- final presentations Thu Dec 10
 - 3-7pm
 - you're invited!
 - https://www.cs.ubc.ca/~tmm/courses/547-20/projects.html
 - <u>https://bit.ly/36ufd5T</u> (shortened) zoom URL

547 Projects

- Geographic-Financial.
- UCoD Simplifying Supply Chain Structures in the Browser.
- Country vs. Country: Food & Allergy Edition.
- Visualizing Linguistic Diversity in Vancouver.
- Visualizing Compiler Passes with FirstPass.
- EnergyFlowVis:Visualizing Energy Use Flows for UBC Campus.
- Disease Outbreak Radar: A Tool for Epidemiologists.
- Bewilder: Handling Web Resource Complexity in Online Learning/Research.
- Visualizing Mobility and COVID-19.
- Android App Similarity Visualization.
- Firest: Visualizing the Current State and Impact of Wildfires Across Canada.
- Smart Intersection Vis.
- AMR-TV: Antimicrobial Resistance Transmission Visualizer.
- Visualizing Simulation of Evolutionary Trend of Language in Color Naming.
- Did We Save Our Tigers?
- README: A Literature Survey Assistant.

Ugrad course: CSPC 436V

- new, second offering is Jan 2022
 - first offering
 <u>https://www.cs.ubc.ca/~tmm/courses/436V-20/</u>
 - substantial changes in the works for online version
- 4th year majors course
 - theory: visualization foundations
 - tooling: D3.js
 - prereq: CPSC 310