Tree Comparison Contest: TreeJuxtaposer

James Slack, Tamara Munzner (UBC)
François Guimbretière (Maryland)
October 19, 2003
Phylogenetic Trees

- Differences marked automatically in red
 - Visually highlight exact points of topological change
Phylogenetic Trees

- Differences marked automatically in red
 - Visually highlight exact points of topological change
Selected subtrees can be marked with colour
- Coloured subtrees aid structural analysis
Classification Trees

- Mammalia subtree (6K nodes)
- Greedy label drawing algorithm, label not drawn if overlap
Classification Trees

- Mammalia subtree (6K nodes)
- Greedy label drawing algorithm, label not drawn if overlap
Classification Trees

- Subtrees can be stretched (rubber sheet)
- Rest of tree compressed, remains in view (tacked borders)
Classification Trees

- Subtrees can be stretched (rubber sheet)
- Rest of tree compressed, remains in view (tacked borders)
Classification Tree Node Movement

- Select subtree, preprocessed set of best nodes selected
 - Forest may result from best nodes, calculation in $O(n \log^2 n)$
Classification Tree Browsing

- Scalability: interactive browsing with 198K nodes
- Nodes initially given equal vertical screen space
Scalability: interactive browsing with 198K nodes
Nodes initially given equal vertical screen space
Classification Tree Browsing: Video 1

- Mouse browsing: spatial highlighting
- Keyboard browsing: topological highlighting
- cousin.mov (0:23)
- Stretch subtrees with resize boxes using mouse
 - Browse to leaf nodes with mouse highlighting
- Traverse children of “mammal” to find ancestor
 - Arrow keys browse through topology
 - Resize ancestor with keyboard command, fine selection
- Progressive rendering for smooth animation
- browsing.mov (1:30)
Classification Tree Browsing: Video 2
Classification Tree Browsing: Video 2
Classification Tree Search: Video 3

- Search for node with the find panel
 - Results relayed instantly as marked nodes
- dolphin.mov (0:57)
Classification Tree Search: Video 3
4-way comparison of “hcil” subtree (3700 nodes)
 • Sparse differences are guaranteed to be visible
TreeJuxtaposer Weaknesses

- Attributes for nodes not handled
- Trees cannot be edited
 - Topology is static
 - Node name is static
 - No filtering
- No undo/playback functionality
- Large memory footprint
 - Unable to load two 200K node trees for comparison
TreeJuxtaposer Strengths

- Guaranteed visibility of marked groups
 - Global overview to start, stretch to details
 - Focus+context (rubber sheet, tacked borders)

- Scalability
 - 4 way comparable: up to 75K nodes per tree
 - 2 way comparable: up to 140K nodes per tree
 - Single tree interactively browsing: up to 550K nodes

- Progressive rendering
 - Draw important animation updates first
TreeJuxtaposer Strengths

- **Difference computation automated, preprocessed**
 - Visually highlight exact points of topological change

- **Interactive search**
 - Real-time visual feedback displayed in context during search

- **Linked functionality**
 - Highlighting: mouse-over reveals best corresponding nodes
 - Marking: is subtree on A best represented as a forest on B?
 - Navigating: stretch trees simultaneously
Further Information

• TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility
 – Tamara Munzner, François Guimbretière, Serdar Tasiran, Li Zhang, Yunhong Zhou, SIGGRAPH 2003

• Entry: http://www.cs.ubc.ca/~tmm/papers/contest03

• Visit our interactive poster for demonstration