
TreeJuxtaposer InfoVis Contest Entry
James Slack ∗

University of British Columbia
Tamara Munzner †

University of British Columbia
François Guimbretière ‡

University of Maryland

1 Abstract

TreeJuxtaposer is a tool for interactive side-by-side tree compari-
son. Its two key innovations are the automatic marking of topolog-
ical structural differences, and the guaranteed visibility of marked
items. It uses the AccordionDrawer approach for layout and naviga-
tion, a multifocus global Focus+Context approach where stretching
one part of the tree or screen causes the rest to shrink, and vice
versa. Progressive rendering guarantees immediate interactive re-
sponse even for large trees.

2 Introduction

We showcase TreeJuxtaposer in our contest entry, a system recently
created by one of the authors for the visual comparison of large
trees [Munzner et al. 2003]. Our target audience was biologists
comparing phylogenetic trees, so we were delighted by the topic
choice of this year’s inaugural InfoVis contest.

Although our tool is specifically tuned for the needs of evolu-
tionary biologists, we have asserted that it is applicable in a wide
variety of domains. We were pleased to back up this assertion with
strong results for many of the file system log data questions.

The TreeJuxtaposer [Munzner et al. 2003] interface is built
around navigation by growing and shrinking areas. It also supposes
very fast querying by mousing or keyboard across a dense visual
representation of the tree. We compute the “best corresponding
node” from one tree to another, and use this information both for
linked highlighting and determining exact areas of structural differ-
ence to be marked,

3 Strengths

Our system has many strengths. From the first startup image alone,
we can immediately answer many questions because we explicitly
mark the exact places where structural differences occur. We can
instantly characterize whether changes include additions or dele-
tions to the leaves, based on whether the red difference marks oc-
cur in the leaves (additions/deletions) or solely in the interior (mov-
ing around existing nodes rather than adding or deleting them) as
different. For example, we immediately saw that the classification
datasets are almost all additions and deletions, and the phylogenetic
dataset changes are all the result of moves with no adds/deletes.

Linked highlighting is also a powerful feature when interacting
with the trees, especially in conjunction with our design decision to
use a very dense visual representation of the tree and support ex-
tremely fast mouse over pop-up highlighting (the latter using front-
buffer drawing tricks to avoid requiring a full redraw). The video
shows how simply moving the mouse around the screen for a few
seconds imparts a great deal of information about the structure at
both high and and low ranks. When the trees are quite different, the
pop-up highlight on the other side skitters about a great deal. For
similar trees, the linked highlight is more sedentary.

∗Email: jslack@cs.ubc.ca
†Email: tmm@cs.ubc.ca
‡Email: francois@cs.umd.edu

The core navigation paradigm is growing and shrinking areas, al-
lowing multiple focal areas to support inspection of multiple spots
within a single tree. A particularly powerful feature is the ability
to simultaneously grow or shrink every item in a marked group.
Linked navigation is heavily used, because usually seeing the cor-
responding areas grow and shrink in “slave” mode while interacting
with a “master” tree. Although we do support unlinked navigation,
we note that it is used only rarely.

Guaranteed visibility of marked areas is one of the major rea-
sons for our success at the contest tasks. For instance, the incre-
mental search is useful even for the full classification dataset of
200K nodes, because a marked leaf is visible even from the global
overview level. Guaranteed visibility is extremely helpful for com-
parison tasks, because the alternative is exhaustive search. Without
guaranteed visibility, it is hard to know when to stop hunting for
marks; marks could lie outside the viewport, be occluded by other
objects, or even if these two constraints are met they might be invis-
ible simply because they are culled when they project to less than
one pixel of screen area. We conjecture that guaranteed visibility
dramatically shortens the time required for exploration and analy-
sis. However, we have no empirical proof because we did not test a
second person with the tasks using a version of TreeJuxtaposer that
disabled guaranteed visibility.

This operation is a very quick way to understand structural dif-
ferences and we do it extensively to answer the contest questions.
Also, the incremental search function is a marking approach heav-
ily used in our answers, because it shows the results situated in their
usual context rather than out of context. The incremental search ex-
tension provided fine control of TreeJuxtaposer that did not exist
in the previous work [Munzner et al. 2003] since it allows users to
search for nodes by name. See, for example, how Figure 1 shows
all nodes found with ”dolphin” in their common name. The partial
matching provides the power to seek any node by substring match-
ing and visually represents the found nodes with guaranteed visi-
bility and negligible run-time or start-up overhead. In addition to
marking nodes known by name, the searching interface allows users
to browse through the search results and selectively mark nodes
from the search if any undesirable search result occurs. Another
improvement from the previous paper is changing the progressive
rendering algorithm to use multiple seeds for the rendering queue
rather than starting only with the focus cell of the last user inter-
action. We now add the first few items from each of the marked
groups in the queue when starting a frame, so it is easier to main-
tain context when interacting with large datasets.

4 Weaknesses

One major weakness is that we make no attempt to handle at-
tributes, so we leave several questions unanswered. If we had the
time to spare, we could have implemented an interface where vari-
ous attributes could be manipulated: marked with colors, and grown
or shrunk. The internal infrastructure of TreeJuxtaposer would eas-
ily support this functionality, since would use the same underlying
mechanism as our current interface that allows interactive manipu-
lation of groups. Although we already have the infrastructure and
the required parser would be straightforward, it would not be trivial



Figure 1: Result of an incremental search query on “dolphin” in
classif A, common names, with all results grown

to create a usable user interface for this sort of exploration.
Although TreeJuxtaposer is very powerful for a fairly large set

of tasks, it is not a flexible or general-purpose system. For instance,
we do not support editing at all. Another weakness is the current
lack of undo support or history tracking.

We were able to load and interact in real-time with a single large
classification tree of two hundred thousand nodes. However, we
were not quite able to load both huge trees at once for side by side
comparison. (We ran out of memory: an unfortunate java limitation
is that on 32-bit machines the heap size cannot grow past 1.8GB.)
We thus answer all of the classification comparison questions for
the Mammalia subtree only.

5 Contest Results and Discussion

5.1 Phylogenies

The trees in the phylogenies tasks were handled easily by TreeJux-
taposer. The structural differences were no problem for the dif-
ference computations and TreeJuxtaposer noted that no leaf nodes
were added or deleted between the sample trees provided. The in-
put order of the nodes did not affect the final matching of TreeJux-
taposer, only the top-to-bottom drawing order.

We found that the structural differences in the internal nodes are
varied; some subtrees we chose to mark in phylo A ABC were very
spread out as forests in phylo B IM while other subtrees only dif-
fered by a slight perturbation in structure. The largest subtree we
were able to find in the unmodified trees (we did not use the prop-
erty of these trees being unrooted) was five levels deep.

5.2 Classification Trees

Unlike the trees in the phylogenies tasks, the classification trees had
more lower-level differences in structure while larger subtrees (such
as rodentia) were not being classified differently between trees. The
classification differences were mostly additions and deletions (clas-
sif B had 7717 leaf nodes more than classif A, each tree has over
two hundred thousand nodes) but some other types of structure
changes such as the one in Figure 2 were also noticed.

The differences when comparing the Latin versus the common
naming conventions in the classification trees were also quite in-
teresting. The common names were not consistent and produced

Figure 2: Structure movement shown by marked subtrees: classif A
on the right and classif B on the left

many differences (most of both trees were marked different, which
did not provide useful information) while the Latin names provided
a better insight into the subtree changes in the overall tree structure.
The interactive mouse navigation and browsing features of TreeJux-
taposer are easy enough to use to find any animal with knowledge
about basic animal physiology.

5.3 File System Logs

We were able to concurrently manipulate all four logs after reduc-
ing the set of the logs to the /projects/hcil as well as do pair-wise
comparisons on each of the full trees. There were fewest differ-
ences between logs A and logs B so they were the most interesting
to compare in a pair-wise manner. Each of the differences noticed
in the four-way comparison were examined in detail.

Determining which directory contained the largest number of
files (leaf nodes) was easy with these data files since there were
a few leaf-quantity-superior main directories in the file structure.
Immediately after loading a log file, the biggest directories (users,
class) pop out with their leaf nodes fanning out on the right side
of the tree; this puts visually attractive large gaps between the big
directories and their smaller neighbors.

6 Conclusions

TreeJuxtaposer is useful in automated and interactive tree compar-
ison. The simplicity of the interface and the fluidity of the interac-
tion allows users to concentrate on the more interesting tasks such
as the ones provided by this contest. TreeJuxtaposer is flexible
enough to handle many different types of tree structures as well
as compare several trees side by side. Although the current tool-
set for TreeJuxtaposer lacks utilities for full attribute analysis, it’s
clear that interface modifications will provide an attribute-capable
comparison tool with the infrastructure that we have provided.

References
MUNZNER, T., GUIMBRETIÈRE, F., TASIRAN, S., ZHANG, L., AND

ZHOU, Y. 2003. TreeJuxtaposer: Scalable tree comparison using Fo-
cus+Context with guaranteed visibility. In Proc. SIGGRAPH 2003.


