
Compression for Power Set Visualization using Accordion
Drawing

Janek Klawe
61496980

CPSC 449

May 1, 2004

Abstract

Steerable data mining systems allow humans to monitor data mining programs and focus their efforts
more effectively, but in order to do so, the human must process the large amounts of data produced by the
system. The PowerSetViewer visualization system is an interface for such a system, based on ”accordion
drawer” technology; however, one of the challenges in the development of PowerSetViewer was that
the data returned by the mining system was in the form of power sets, which are difficult to render in
real time because of their large size. My honors thesis project has been to help design and implement a
compression algorithm which acts on the data structures used to represent these power sets and reduces
them to a manageable size.

1 Introduction

Data mining tools, which search large bodies of data for patterns, see use in a variety of applications.
However, such tools generally take a long time to return results; there is a danger that the user will run
a data mining program and wait for it to finish, only to find that the system’s initial settings were poorly
specified. Typically the constraints are either much too tight, resulting in too few matches; or much too
loose, resulting in unmanageably large numbers of matches. To remedy this, some researchers [1] suggest
that data mining be approached as an iterative process, with a human monitoring the system and ”steering”
it towards more favorable areas of analysis. Unfortunately, data mining applications tend to return so much
data that it is difficult for a human to process the data quickly enough to steer the application in real time.
However, with the aid of a good visualization system, such an arrangement becomes more realistic.

To solve this problem, Professors Munzner and Ng are developing PowerSetViewer, a visualization sys-
tem based on ”accordion drawing”. PowerSetViewer uses existing accordion drawing code from previous
projects, which is based on a quadtree data structure. Unfortunately, due to the size of power sets, which
grow exponentially, rendering them with this code would result in very large quadtrees; the costs in mem-
ory and processing power would be unacceptable. However, in this application, the quadtrees are extremely
deep and sparse, making them particularly amenable to compression. For my honors thesis, I worked with
Dr. Munzner to design a compression scheme which exploits the sparseness of these quadtrees, and then
implemented it.

1

Figure 1:Left: TreeJuxtaposer used to compare two phylogenetic trees. Red coloring marks the areas where
the trees differ.Right: The same tree, after using distortion-based navigation to zoom in onhomo sapiens.

2 Background

2.1 Data Mining Background

In [2] and [1], Leunget al.describe a type of data mining system. The system, given a set of constraints and
a database (a set of elements), acts as a filter, returning the subset of elements in the database that satisfy
the constraints. The system returns the elements as it finds them, so it produces a stream of elements in
real time until it has found all of them. The system is also steerable in real time, meaning the user can
change the constraints while the system is running. This feature enables users to notice when the system is
returning too many or too few results and adjust the constraints accordingly.

In this project, we consider the case in which the elements in the database are item sets. For example, if
the database contained the record of all sales made by a retail store, each element would contain the items
purchased in a single transaction, so the item sets might be ”apple, banana” or ”banana, orange, pear”.
(Note that the quantity of items purchased is irrelevant; the area of interest is which items were purchased
together.) Examples of constraints would be ”item sets with total price> $5” or ”item sets with maximum
item price< $4”.

We call the set of all items the alphabet. In the above example, the aphabet would include ”apple”, ”banana”,
”orange”, and ”pear”. Obviously, the set of all possible item sets is the power set of the alphabet. The output
of the data mining system will be a subset of this power set.

Since the system can be steered in real time, it is necessary that the user be able to view and understand the
returned information efficiently. Because the output will be produced quickly and in great volume, the user
will require a special interface to process it. Accordion drawing seems a natural fit.

2.2 Accordion Drawing

”Accordion drawing” refers to a new information visualization technique, in which the user navigates
through data by distorting its visual representation, zooming in on interesting areas while keeping the
rest of the data visible in the periphery. It was introduced in TreeJuxtaposer [3], a visualization system
designed to facilitate the comparison of phylogenetic trees (see Figure 1). It was recently used in a second
system, SequenceJuxtaposer [4], which displays molecular sequences rather than trees; enhanced versions
of TreeJuxtaposer have also been developed [5].

The accordion drawing technology used in TreeJuxtaposer and SequenceJuxtaposer has several attractive

2

Figure 2:Left: A screen divided into a quadtree structure. The user is interested in the red area. Since all
nodes have default SplitLines values of1

2 , each node is allocated an equal amount of screen space.Right:
By altering the SplitLines values, the screen is distorted, enlarging the area of interest.

features:distortion-based navigation, as described above;guaranteed visibility, meaning that areas marked
as ”important” are always visible, even when they would normally be removed from view by distortion
(e.g., zoomed out to less than one pixel in size); andguaranteed frame rate, meaning that if the system is
unable to render an entire frame within the specified time, it renders as much as possible, starting with the
most ”interesting” features, and fills in the rest over time.

Accordion drawing is implemented using a quadtree data structure. The screen is divided into four quad-
rants, each of which is recursively subdivided into four more quadrants, and so on. The result is a tree with
a branching factor of 4. Each element that needs to be rendered is assigned a leaf node at the bottom of the
tree; the rest of the nodes are only used to maintain the hierarchy. This hierarchical structure is the main
advantage of the quadtree: it makes it easy select to groups of nodes onscreen and scale them.

Specifically, each node in the quadtree has a certain rectangular region of screen space associated with it.
This space is divided into four smaller rectangles by two lines: one vertical, one horizontal. The placement
of these lines is determined by the node’s so-calledSplitLines values. By default, these values are both
equal to1

2 , meaning that the rectangle is evenly split on each axis. However, these SplitLines values can
be altered (by the user, in real time), resulting in some regions growing and others shrinking accordingly.
Through a mouse-based interface, users can manipulate these values in order to ”zoom in” on areas of
interest (See Figure 2).

3 PowerSetViewer

PowerSetViewer is an in-progress visualization system designed for viewing item sets returned by the data
mining engine described above. It uses the same accordion drawing code as TreeJuxtaposer and Sequence-
Juxtaposer; however, instead of drawing trees or sequences, it draws item sets. It works as follows:

Upon receiving a set of constraints from the user, the interface communicates the constraints to the data
mining engine, which searches the database and returns all item sets satisfying the constraints. As the
engine finds them, the item sets are displayed onscreen, where the user can navigate through them using the
accordion drawing interface. If user feels, based on the results so far, that the constraints are too tight or too
loose, he can change them: all item sets which do not match the new constraints will be removed, and the
data mining engine will restart the search using the new constraints.

Unlike trees or sequences, item sets have no obvious structure which we can use to organize them onscreen.
Our approach is to first define a simple, abitrary ordering on the power set; in this case, we order the sets
first by the number of elements, then by their contents. Then, based on its place in the order, each possible

3

Figure 3: A simple example of positioning item sets onscreen.

item set is mapped to a location in a rectangular region displayed onscreen. (Of course, the number of
item sets returned may be larger than the number of pixels onscreen; hence the need for distortion-based
navigation.) Figure 3 illustrates how the power set of a simple alphabet is mapped to a two-dimensional
grid.

The three students working on PowerSetViewer are Jordan Lee, Dragana Radulovic, and myself. Radulovic’s
work concerned the data mining engine and its interaction with the visualization client: she extended the
server (the data mining engine) for two-way communication, allowing commands (such as changes in con-
straints) to be sent from a client. Meanwhile, Lee developed the client: extending the accordion drawing
system to actually draw the item sets, and adding controls to the GUI to allow users to change the constraints
and send them to the data mining server.

My role was the development of the compression system. Dr. Munzner and I designed the algorithm; then
I implemented the algorithm to work with the TreeJuxtaposer code. (The PowerSetViewer rendering code
had not been written at that time.)

4 Compression

One of the biggest differences between PowerSetViewer and the previous accordion drawing systems is the
size of data to be displayed. Because the size of a power set grows exponentially with the size of the original
set (the alphabet), the number of possible item sets will be huge for any interesting application. Since the
depth of a tree increases with the log of the number of leaves (that is, the number of possible item sets), the
depth of our quadtree will be proportional to the size of the alphabet. Thus, even when the power set is very
sparsely populated, the tree will take up a great deal of memory and require a great deal of time to navigate.

To solve this problem, Dr. Munzner and I developed compression system which reduces the number of
nodes in the tree. We noticed that since the ratio of the quadtree’s depth to the number of leaves is relatively
high, there will be many nodes in the tree with exactly one child. Furthermore, these nodes contain no
actual data; their only purpose is to maintain the hierarchical structure of the tree. Therefore, the only
interesting information possessed by this node is which of 4 possible positions its child is in; that is, 2
bits’ worth of information. Thus, when a tree contains a long chain ofN nodes with no branching, the
chain is compressed into an array of2N bits. (Actually, it is stored in two arrays, each containingN
bits. When a node is compressed, one bit is used to store its child’s vertical position (top or bottom), and
one bit is used to store its child’s horizontal position (left or right). These two bits are stored in separate
arrays). With this innovation, we hope to make it possible to view relatively large sets of item sets while

4

Figure 4:Left: A typical tree with little branching. Red nodes contain actual data.Right: The same tree,
after compression. Blue nodes represent chains of nodes which have been compressed. (Remember that
neither leaf nodes nor their parents can be compressed.)

maintaining reasonable response times. (Figure 4 shows how a tree with moderate depth and few leaves can
be substantially compressed using this algorithm.)

Unfortunately, there are limits to the number of nodes we can compress. Of course, nodes with multiple
children cannot be compressed, and neither can leaf nodes. Furthermore, the parents of the leaf nodes
cannot be compressed either, for the following reason:

When the user attempts to distort an area onscreen, the system performs the distortion by altering the
SplitLines values of certain nodes. However, if these nodes have been compressed, their SplitLines values
will be fixed at 1

2 , making it impossible for the system to perform the correct distortion. Fortunately, for
some applications (including, we believe, PowerSetViewer), we do not need every SplitLines value to be
available: we can make do with a certain subset. In the case of PowerSetViewer, we require that the parents
of the leaf nodes be uncompressed so that their SplitLines values remain mutable.

The compression algorithm I implemented is static, meaning once it has been applied to a quadtree, no
nodes may be added or removed from the tree. (Static compression is fine for TreeJuxtaposer, where the
phylogenetic trees never change, but for PowerSetViewer a dynamic algorithm will be needed.) It works
by traversing the tree, identifying nodes which can be compressed, and replacing each one with a dummy
node containing two empty bit vectors. If one dummy node is the parent of another, they are collapsed into
a single dummy node, and a bit is added to each bit vector, depending on what position the child was in
(e.g., if the child was in the bottom-right position, both bits would be 1).

4.1 Benefits

Although we cannot yet test the compression system empirically, we can estimate the savings in space and
time created by this system. We will consider the space savings first.

Let K be the size of the alphabet andN be the number of item sets returned. Then the number of possible
item sets is2K , and the depth of the quadtree islog4(2K), or K

2 . Now, since each branch of the tree
increases the number of leaves by at least one, the number of branches must be at mostN − 1. The
only nodes which cannot be compressed are the nodes with branches, the leaf nodes (the ones with actual
content), and the parents of the leaf nodes (because they have important SplitLines information). So, we
have at mostN +(N − 1)+N , or3N − 1 nodes which cannot be compressed. In other words, the number
of nodes which cannot be compressed isO(N). Obviously, we cannot expect to have space complexity
better thanO(N), so being able to compress all but3N nodes into 2 bits each (plus overhead costs for the
bit vector data structures and dummy cells) constitutes excellent savings in space.

5

Figure 5: Each node in the tree fragment on the left corresponds to an interval on the right: the top node
corresponds to the entire interval[0, 1], its child corresponds to just the right half of the interval ([12 , 1]), and
so on. This fragment would be compressed with a bit vector of 110, or ”right, right, left”. Observe that the
bottom node starts at the 6th increment, or position 110 in binary. In general, given a series ofn compressed
nodes, with the bit vector represented as a binary numberb, the corresponding starts atb2n and ends atb+1

2n .
Thus, the bounding rectangle of the bottom node can be determined by performing just 2 divisions.

Savings in time are more difficult to estimate. However, we can examine the most common operation, which
is calculating the onscreen location of each item set. As described in Section 2.2, each node in the quadtree
represents a rectangle of screen space; call this the node’sbounding rectangle. The location and dimensions
of this rectangle depend on those of its parent’s bounding rectangle, as well as the parent’s SplitLines values.
In order to draw an item set, it is necessary to know the bounding rectangle of its corresponding leaf node.
Thus, in order to draw every item set, the bounding rectangle of every node in the tree must be calculated.

But what happens when nodes are compressed? Since a node’s bounding rectangle depends on that of its
parent, we only need to calculate the bounding rectangle of the bottom node in each chain. Now, when a
chain of nodes is compressed, it is assumed that the SplitLines values of each node are all equal to1

2 (the
initial value for all nodes). Because of this fact, it turns out that the bounding rectangle of the bottom node
can be found by interpreting the bit vectors representing the chain as two binary numbers, and performing
pair of divisions on each number (See Figure 5 for an example).

Unfortunately, since it is impossible to operate on arbitrarily large binary numbers as primitives, this op-
eration cannot quite be done in constant time. In practice, it requires a few operations for every 63 bits in
each bit vector. (Because the largest primitive in Java is 64 bits, and it is easier to leave aside 1 bit to avoid
dealing with the sign bit, our bit vector stores bits in groups of 63.) In other words, it can be performed in
very fast linear time.

Returning to the original issue, that of calculating the location of each item set, it is clear that the time
savings can be substantial if a large number of nodes are compressed. And, of course, we have already
established that the number of uncompressed nodes must be less than3N , meaning that we can expect
significant savings in time as well as space.

4.2 Future Work and Potential Problems

My implementation of the compression algorithm demonstrated the idea behind the system, but some work
remains to be done before it can be used in PowerSetViewer. First, the system needs to be modified to allow
elements to be added dynamically. TreeJuxtaposer, the system on which I was working, reads in all its
data at once and constructs its quadtree during initialization. Consequently, it does not allow new elements
to be added while it is running. However, because new data will be continously provided by the data
mining engine, it is necessary that the PowerSetViewer interface be able to add new elements at any time.
It will also no longer be possible to perform a one-time compression on the quadtree during initialization;
instead, the compression must be performed continuously as elements are added. Additionally, there will
occasionally be large numbers of deletions: when the user changes the constraints, many item sets will no

6

longer satisfy them and will need to be removed. My implementation does not take deletions into account
at all.

The compression algorithm also needs to be integrated into the PowerSetViewer system, which may cause
problems. One potential problem is the time needed to compress each node. The time taken by the current
implementation seems reasonable (considering that it is not optimized), but the dynamic version of the
algorithm may be faster or slower. Also, the cost of compression is proportional to the rate at which nodes
are added to the tree, which depends on the speed of the data mining algorithm. Consequently, it is difficult
to predict how much overhead will be imposed by this algorithm.

Another problem has to do with SplitLines. As explained in Section 4, certain nodes cannot be compressed
because their SplitLines values are important. If these cells were compressed, the system would be un-
able to perform distortions properly. However, exactly which nodes fall into this category depends on the
application. For example, in TreeJuxtaposer, every node’s SplitLine values are used in some way, so the
compression causes some minor inaccuracies. We believe that in PowerSetViewer, only the parents of leaf
nodes will contain important SplitLine information; however, if this assumption turns out to be mistaken,
we may not be able to compress as many nodes, and the savings estimates in Section 4.1 will not hold.

5 Conclusions

For my honors thesis project, I worked with Dr. Munzner to design an algorithm to compress deep, sparse
quadtrees in PowerSetViewer. I then implemented the algorithm in the TreeJuxtaposer system. The algo-
rithm appears to work well in TreeJuxtaposer; furthermore, based on the calculations of Section 4.1, we
expect this algorithm to provide enough savings in space and time to allow PowerSetViewer to render the
results from the data mining engine in real time.

6 Acknowledgements

I would like to thank Dr. Tamara Munzner, my thesis supervisor; Dr. Raymond Ng and Dr. Carson Kai-
Sang Leung, who developed the data mining engine; and Dragana Radulovic and Jordan Lee, who worked
with me on the PowerSetViewer project.

References

[1] Lakshmanan, L.; Leung, C.; Ng, R. ”Efficient Dynamic Mining of Constrained Frequent Sets”.ACM
SIGKDD Explorations NewsletterVolume 4, Issue 1, pages 40-49 (June 2002).

[2] Leung, C.; Lakshmanan, L.; Ng, R. ”Exploiting Succinct Constraints using FP-trees”.ACM Transac-
tions on Database SystemsVolume 28, Issue 4, pages 337-389 (December 2003).

[3] Munzner, T.; Guimbretìere, F.; Tasiran, S.; Zhang, L.; Zhou, Y. ”TreeJuxtaposer: Scalable Tree Com-
parison using Focus+Context with Guaranteed Visibility”.SIGGRAPH 2003.

[4] Slack, J.; Hildebrand, K.; Munzner, T.; St. John, K. ”SequenceJuxtaposer: Fluid Navigation For Large-
Scale Sequence Comparison In Context”. (in publication)

[5] Beermann, D.; Munzner, T.; Humphreys, G. ”Scalable, Robust visualization of Large Trees”. (in
publication)

7

