
 1

Author: Alex Vostrov

Thesis Supervisor: Tamara Munzner

Co-Supervisor: Ken Elwood

EqkVis: Visualization

For

 Earthquake Simulation Data

1: Introduction

The UBC Department of Civil Engineering performs tests on structures to

determine their response to earthquake-like events. Test specimens like walls and domes

are rigged with measuring instruments and then are shaken on a shake table. Data can be

of varying types (acceleration, displacement, etc), collected by varying instruments. The

resulting data are recorded by a software package and can be output as a computer file.

The resulting file was a human-readable table of data values collected during the

experiment.

The standard process for analyzing the experiment data would be quite

inconvenient for the user. First, the user would have to modify the output file by hand to

a format that could be accepted by MatLab. Then, the user could manipulate the output

as a matrix in MatLab. MatLab was not ideally suited for the process of data analysis.

While MatLab offers powerful tools for mathematical manipulation, it is not specialized

in the area of data visualization. In addition, there was the problem of context. Once the

data was imported into MatLab, it ceased to be instrument data and turned into plain

numbers. For large data sets, this put a strain on the ability of the user to remember what

the particular data vectors signified as there was no way to link the numbers to the

experiment within the program. Altogether, while MatLab provided a way to accomplish

the things that the user needed, it was a time-consuming difficult process.

For my honors thesis we created EqkVis - an application designed to streamline

the display and analysis of data generated by earthquake tests. It is designed to enhance

the workflow of the user by providing domain-specific tools that are easy and quick to

use. In addition, the user is given the capability of linking the data to the experimental

setup, providing a context for data analysis.

 2

2: Design

AutoCAD

Drawing

Exported
Experiment

Data

Experiment
Data

Description

EqkVis XML

Drawing

EqkVis Drawing Exporter

EqkVis Program

Figure 1: EqkVis Design

 The system accepts 3 sources of data, as shown in Fig. 1. The first source is an

AutoCAD drawing of the specimen. This drawing is used by EqkVis to provide the user

with visual context for the instrument data. The second source is an exported file from

the lab software. The third source is a file describing what the exported file contains.

The data is processed in two tiers. The first tier exports data from AutoCAD into an

Extensible Markup Language (XML) file format that is readable by the EqkVis program.

The second tier is the EqkVis program, which accepts the exported drawing, data and

data description. The EqkVis program is the piece of the system that is responsible for

visualization, analysis and manipulation of the data. The reason for choosing this

structure was twofold.

The first reason was that the structure of the AutoCAD format is not readily

available to developers outside of Autodesk. This presents the immediate problem of

simply acquiring the drawing from AutoCAD. AutoCAD does offer several export

options into formats such as 3DS, but the process of exporting a drawing into one of

these formats removes important data from it. One example of this problem would be the

simplification of parametric shapes such as circles and splines. Such a shape could be

subdivided into line segments, rendered into pixels or even removed altogether.

The second reason for creating a two-tier system was the inherent benefits of

having an intermediate format for the drawing. This buffers the EqkVis program from

 3

changes in AutoCAD. If Autodesk decided to modify the AutoCAD drawing format,

EqkVis would be no longer be able to load it directly. By having an intermediate format,

the potential impact of AutoCAD changes would be limited to the exporter. Another

benefit of having an intermediate format is the possibility of supporting another type of

Computer Aided Design (CAD) program. While AutoCAD is strongly entrenched in the

market, it may be in the future that another CAD program becomes used widely. In that

case, the only changes to EqkVis that have to be done is the creation of a special exporter

for that new program. The code EqkVis program would not be affected by the need to

interface with new software.

Since the AutoCAD format is not available for public examination, writing an

external program that converted it to another format was impossible. The only other

solution was to examine the features AutoCAD provided to developers for self-

modification. Fortunately, AutoCAD provides several ways for developers to extend it.

Developers can write macros that are interpreted by AutoCAD for some effect. The two

outstanding methods for making a macro in AutoCAD are to write in LISP or write it in

Visual Basic. Of the two alternatives, Visual Basic was chosen because of its clear

structure; the LISP alternative was less suited to writing an exporter.

One big problem that had to be solved was the recognition of instruments and the

acquisition of their coordinates. Engineers use certain symbols in the drawing to mark

the positions of instruments. Unfortunately, there is no universal definition for the shape

of the symbols, nor is there a way to quickly distinguish them from other drawing

elements. Unfortunately, that implied that EqkVis would have to recognize the symbols,

somehow out of a jumble of other drawing elements. This appeared to be a difficult

problem that preferably would not have to be dealt with in the project. The final solution

was to insert special data into the drawing elements that represented the instrument. In

particular, AutoCAD allows one to associate a URL with a drawing element. We decided

that to mark a symbol as an instrument, the URL would be set to a special value. That

way, EqkVis can differentiate between simple drawing elements and instrument symbols.

The second tier of the system is the EqkVis program, which the user interacts

with to visualize, manipulate and analyze the test data. From the user’s point of view,

interaction happens with three different windows: the drawing view, plot view and

instrument editing. The drawing view enables the user to view the experimental

specimen drawing and the instruments attached to it. It allows the user to connect data to

its source instrument, making work with instrument data more intuitive. The drawing

view also has the potential to provide the user with positional information about the

instrument (although this feature is currently unsupported). The plot view enables the

user to display the instrument data in a variety of ways. The user can make standard Data

vs. Time plots or parametric plots of Data vs. Data with the option of having several plots

in the same window. The instrument-editing module allows the user to manipulate

instrument data. In particular, the user can create linear combinations of existing

instruments. The user then can plot the new “composite” instrument the same way a

regular one could be plotted.

 4

EqkVis accomplishes its goals of workflow simplification in several ways. First,

the user is not forced to edit the instrument data files by hand; the program can read

output from the lab software without any help. Unlike MatLab, EqkVis provides the user

with instrument names and organizes data from multiple experiments. EqkVis also

enables the user to create linear combinations of instruments in an intuitive fashion and

the data that is produced by this process is easy to plot. Last, EqkVis allows the user to

connect the data set to a drawing for context. While there is some work needed to

prepare the drawing for the program, the user can choose how many of the instruments to

label. The user can thus receive a proportional benefit to the work preformed.

3: User Experience

Figure 2: Starting Screen

 After EqkVis is started, the user is presented with the screen as illustrated in Fig.

2. The work area is virtually empty, with the exception of the Instrument List window.

This window allows the user to see what instrument data has been loaded. It is organized

as a tree, to allow the user to distinguish between instruments and data sets. This enables

the user to load several sets of data from multiple experimental runs that involved the

same instruments. Finally, the window contains the special *Synthetic group which

contains artificial data sources such as composite instruments and the time instrument.

 5

Figure 3: Creating a data set file

 The first thing that the user will have to do when working with new data is the

creation of a new data set file (DTS file). These files describe which instruments were

active during an experimental run. To make a new DTS file, the user should open the

File menu and select Make DTS File. EqkVis will ask the user to select an ASC file that

has been produced by the lab software. After the ASC file is analyzed, EqkVis will

display the DTS Exporter window as in Fig.3. This window allows the user to specify the

instruments that were active during the experiment and specify a name for the data set.

After the user has disabled the appropriate instruments, they should click the Export DTS

button. This will create a new DTS file in the same location where the ASC file was

present.

 6

Figure 4: Loaded Instrument Data

 After a DTS file has been created, it can be loaded by going to File and selecting

Load Data. EqkVis will load the DTS file as well as the linked ASC file and update the

Instrument List window to something like Fig.4. After the DTS file is loaded, the user

can display and manipulate the new data. The Instrument List window allows the user to

manipulate instruments by right clicking on them. For example, selecting Plot vs. Time

will display a plot of the instrument against time.

 7

Figure 5: Plots

 After instruments have been loaded, the user can create plots of them, either

against time or each other. Making a plot against time is the simpler of the two. All the

user has to do is right click the instrument and select Plot vs. Time. The other way to

make a plot against time is to make a parametric plot with the special time instrument as

one of the components. Making parametric plots is a little bit more complicated, but

gives the user a great deal more power. The first step is to create an empty plot window

by going to the File menu and selecting New Plot. Consequently, the user has to add a

new plot to the empty window. The mechanism for doing this is really simple. All one

has to do is drag the desired instruments into the plot view. For example, to make the

parametric plot in Fig. 5, one has to first drag SP10-TopMid into the window and then

SP18-TopS. The first instrument dragged is set as the X-axis and the second as the Y-

axis. When both X and Y axes are set, a new parametric plot is added to the window.

The user can create as many plots in one window as needed in this way, as long as the

units of the axes match those of existing plots.

 The plot window has simple controls. The user can drag the plot with the right

mouse button. The left mouse button allows the user to zoom using a selection box and

the mouse wheel changes the zoom level. The plot window also has a toolbar that allows

the user to manipulate the plots within. The plus and minus buttons allow the user to

zoom in and out. The S button changes the zoom to Standard mode; this ensures that all

plots are completely visible. The last button allows the user to export the plots as a text

file.

 8

Figure 6: Composite Instrument

 The user is not limited to manipulating raw data from experiments. A linear

combination of instrument data can be created in the form of a Composite Instrument. To

create a composite instrument, right click in the Instrument List and select New

Composite Instrument. A new instrument will be created under the *Synthetic group. If

one right clicks the new instrument and selects Edit Composite Instrument, the Composite

Instrument window will appear. This window allows the user to see what a composite

instrument is made of. Initially, composite instruments have no source instruments.

However, if an instrument is selected in the Instrument List and the Set button pressed, a

new instrument will be added to the composition list. Instruments can be deleted from

the list by right clicking and selecting Delete. Finally, the coefficient of the source can be

modified by selecting the instrument, typing a new coefficient in the edit box in the

bottom and clicking Set. Finally, the name of the composite instrument can be modified

by changing the text in the top edit box. When the Composite Instrument window is

closed, the changes to the instrument will be applied. If a composite instrument is no

longer needed, it can be deleted by right clicking on it in the Instrument List and selecting

Delete Composite Instrument. Figure 6 shows an example of how the composite

instrument system can be used to create a difference plot between two instruments. One

of the instruments has a coefficient of 1 and the other has a coefficient of –1. Note that

one can make composite instruments that are made of other composites. As long as there

is no self-reference, an instrument can be added as a source.

 9

 The user can save and load composite instruments. To save, right click in the

Instrument List and select Save Composite Instruments. To load, go to the File menu and

click Load Composite Instruments. The instruments will only be successfully loaded if

the data files that they refer to are loaded beforehand.

Figure 7: The Drawing View

 Finally, the user does not have to use the Instrument List to select instruments.

The drawing view can provide the user with visual context for instrument data. If the

user has a drawing that has been exported out of AutoCAD by the exporter, EqkVis can

load and display it. To load the drawing, go to File and select New Drawing; EqkVis will

ask for the location of the file. After the drawing is successfully loaded, the Drawing

View will appear as in Fig. 7. The controls for this window are similar to the plot

window, with the exception that the box zoom is not available. If the drawing contains

instrument data, then the instruments will be marked in red, allowing the user to select

them. If the corresponding data instrument is loaded, it will also be selected in the

Instrument View. The link also goes the other way; if an instrument is selected in the

Instrument List, it will also change color in the Drawing View.

 10

4: Implementation

 As can be inferred from the design, the implementation of the system is broken

into two pieces of software: the drawing exporter and EqkVis. EqkVis is the larger of the

two by far and the more complicated. The exporter is a relatively straightforward

AutoCAD macro in Visual Basic. At a fundamental level, the exporter iterates through

drawing elements in AutoCAD and outputs them into an XML file. The exporter also

outputs layer information and block information. Layers are used to separate the drawing

into several groups that could be turned on and off separately. Blocks are collections of

drawing elements that can be instanced in the drawing. For example, an instrument

symbol can be defined as a block once and then instanced multiple times. The top-level

drawing is actually just a big block itself. It should be noted that the exporter only

outputs a subset of possible AutoCAD object types. While AutoCAD supports a variety

of complicated of 3D and 2D objects, the exporter limits itself to simple 2D objects such

as lines, circles and arcs.

 EqkVis can be subdivided into 3 major subsystems: the window subsystem, the

test data subsystem and the drawing subsystem. The window subsystem is responsible

for presenting the user interface (UI) to the user and for initiating the commands that the

user requested. The test data subsystem is responsible for instrument data input/output

and storage. The drawing subsystem is responsible for the loading and presenting

drawings and for storing data about drawing instruments.

 11

4.1: Test Data Subsystem

Figure 8: TestData Subsystem Class Diagram

The test data subsystem deals with instrument data I/O and storage. The

fundamental class in this subsystem is CBaseInstrument. This abstract class defines

the interface for a data instrument and provides some elementary implementation.

Basically, a data instrument is a collection of values that depend on time. The instrument

has a name and a data set name that identify it. The name is the name of the instrument

across all experiments, while the data set name is the name of the particular test during

which the data was collected. The instrument also has a minimum and delta time values.

The minimum time is the first time value when the instrument became active. The delta

time is the sampling resolution. The instrument also has a list of other instrument that it

depends of and a list of instruments that depend on it. These lists exist to make the

tracing of dependencies possible for composite instruments.

CTimeInstrument and CTestDataInstrument are concrete

implementations of CBaseInstrument. CTestDataInstrument at its core

provides access to a vector of values that were recorded by the lab equipment.

CTimeInstrument is slightly different, in that its data does not span any finite time

segment and it has a delta time conceptually equal to infinity; the program

implementation uses the largest possible double-precision floating-point value to

 12

represent this fact. Its data values are in one-to-one relationship with time. This

instrument type exists to make plotting instruments against time easier, since EqkVis can

treat plots against time as parametric plots. Since parametric plots are sampled at the

lower delta time value of their components, CTimeInstrument has the highest

possible delta time value to ensure that the plot is sampled at the other instrument’s

resolution. CCompositeInstrument is similar to CTestDataInstrument in

construction, but it also provides ways to linearly combine other instruments. While

CCompositeInstrument also has a data vector, the vector only serves as a cache for

computing the linear combination. If the inputs of a composite instrument are altered, it

will recompute its vector. The test data subsystem provides several lists for keeping track

of various instrument types. CTestInstrumentList is the master list of all

instruments, basic or composite.

 The last part of the test data subsystem is the input mechanism. CTestData is a

class that opens a data file, parses it and creates the appropriate

CTestDataInstrument objects. However, before that can happen,

CTestDataSet must load a data set file and provide CTestData with a list of active

instruments. This is needed because some instruments are turned off during tests, but the

lab equipment still records their signal.

 Last, there are two classes that are outside the test data subsystem, but are

strongly related to it - CInstrumentChangeDispatcher and

CInstrumentChangeObserver. The dispatcher relays changes in the in the

instrument list to the observers. Events like instrument addition, removal, selection and

renaming are tracked. The observers override empty implementations in

CInstrumentChangeObserver with custom functionality that responds to these

events. This is used heavily by the UI to keep the displayed instrument list up to date.

 13

4.2: Drawing Subsystem

Figure 9: Drawing Subsystem Class Diagram

 The drawing subsystem is responsible for the input and display of drawings. It

also keeps track of instruments that have been labeled on the drawing. The basic idea of

the drawing is that each object is responsible for displaying and loading itself. To

establish common functionality between drawing objects, the abstract class

CDrawingObject exists. It is capable of loading common XML data and setting basic

things like color. It has two classes that are connected to it: CColor and CBBox.

CColor is a class that describes the color of a drawing object; it has additional

capability to deal with AutoCAD color representation. CBBox is a bounding box class

and is used for representing the maximum extents of an object. Also, each object has a

block and a layer that it belongs to. CCircle, CArc, CBlockRef, CLine and

CPoint are all concrete implementations of CDrawingObject. Each of them reads

specific data that is relevant to their object (like radius) and implements a way to draw

the object. Most are self-explanatory, but CBlockRef requires a bit of clarification.

The class references a block, which is a collection of drawing objects. The CBlockRef

is an instance of that block in the drawing. This could be used for instancing repeated

patterns in the drawing.

 14

 CDrawing is a top-level singleton that is the access point for outside code. It is

responsible for loading the drawing, storing and displaying it. To accomplish this, it

passes on some responsibility to CBlock and CLayer. Both of these can be thought of

as ways to group drawing objects. CDrawing opens the drawing XML file, finds all

layers and blocks and asks them to load their part of the XML. Subsequently, CBlock

and asks the CDwgObjectFactory to make an appropriate subclass of

CDrawingObject from sub-elements. After everything is loaded, CDrawing

analyzes the drawing elements and groups them into instruments. The instruments are

yet another way to group drawing objects and are represented by

CDrawingInstrument class. They also contain some position data, although that is

currently unused. After loading, the rest of the application can ask CDrawing to display

the drawing, in which case the objects use OpenGL to draw themselves. The caller still

needs to set the matrix stack correctly to focus on a part of the drawing. CDrawing can

also query whether the user picked anything by projecting a ray through the scene. This

is used to detect if mouse clicks hit an instrument.

4.3: Window Subsystem

Figure 10: Window Subsystem Class Diagram

 15

 The window subsystem is responsible for the user interface and uses the standard

Win32 Multiple Document Interface (MDI) window style, to allow sub-windows inside a

larger parent window. To understand how it works, one must has some background

knowledge of Win32 API. While minute technical detail of how the window subsystem

uses the API will not be discussed, a general description will be provided. The main

problem of programming well in Win32 API is its lack of support for Object Oriented

Programming (OOP). Since every window requires a callback, tying an object and a

window together is difficult. Fortunately, the window subsystem solves this. The

general method is that window creation is intercepted with Win32 API hooks and the

object address is recorded in the window reserved storage. When the window calls its

callback, it retrieves the linked object and calls the window procedure in way that

consistent with Object Oriented (OO) design principles. The result is an OO windowing

system. One thing to pay attention to is that windows can be destroyed, but their objects

still persist in an inactive state. For this reason, CWindowFactory is responsible for

the creation windows and the destruction of window objects. Every time a window is

created, CWindowFactory cleans up dead window objects.

 CBaseWindow is a basic abstract class that sketches what an OO window can

do. The limited features include things like creation, destruction and the provision of

some information about the window that the object is linked to. The subclasses

CDialogWindow and CMDIChildWindow implement the creation for their particular

window types. The dialog creates a top-level dialog from a resource and

MDIChildWindow make an MDI child window; neither of these classes is designed to

be instantiated. Their subclasses implement the actual functionality for the windows.

CDrawingWindow implements the ability to display a drawing, providing the interface

for things like selection, camera panning and zooming. CPlotWindow implements the

plot display of data instruments; it uses CPlot to keep information of the individual

plots and to draw them. CInstrumentListDialog implements a dialog with the list

of all instruments. Finally, CCompositeInstrumentListDialog implements the

UI for editing composite instruments. CMDIDialogWindow is a special “container”

window that enables dialogs to be loaded as MDI children. The final two classes perform

unique functions. CMainStatusBar controls the status bar in the MDI window and

CPlotDragNDrop provides storage for dragging instruments in between windows.

 16

5. Discussion and Future Work

 As with most other pieces of software, EqkVis was built under time constraints.

While it represents a significant improvement over current processes in earthquake test

data visualization, it was not meant to be an exhaustive implementation of possible

improvements. It is more appropriate to view EqkVis as the first stage in improving the

workflow for earthquake simulation data analysis. The limited scope of EqkVis covered

replacing existing tools that were inadequate for the task. This has been accomplished

successfully by replacing each stage in the previous workflow with a custom component

in EqkVis.

 EqkVis contributes to two major areas. The first is to simply improve the existing

workflow by providing custom-built tools. The second is to change the way the problem

of earthquake data analysis is viewed. Hopefully, as the tool is used in the future, its

users will be challenged to come up with new ways to improve the workflow. By making

simple activities like creating a difference plot easier, the users will be freed to consider

more complicated tasks that could be done with a more powerful tool. In this way,

EqkVis also lays groundwork for future improvements to the process of earthquake test

data analysis.

The completion of EqkVis solves many problems in earthquake test data analysis,

but it also suggests future directions. With more time, EqkVis could be made more user-

friendly. In addition, there are several possible new directions for expanding EqkVis.

5.1: Code Improvements

 During the development of EqkVis, great care has been taken to create well-

designed code so that extensions can be added easily in the future. Even so, the

implementation could be improved. One particular area that did not get addressed due to

time constraints was the addition of informative error messages. Currently, if there is an

error, the precise cause will not be necessarily obvious. As worthy task would be to go

through all possible errors and to add a better error system that provides more

information. Another thing that could be done is the refactoring of window code.

Currently, the window procedures in the widow classes resemble standard (non OO)

window procedures. If would improve the code considerably to break those large

functions down into smaller pieces to make them more readable.

5.2: Minor Features

 In addition to improving existing code, many new features could be added with

sufficient time. The first on the list is non-uniform scaling for plots. Currently, plots are

always drawn in a one-to-one relation between axis scales. It would be useful if the user

could change this to a different ratio using something like the existing box selection

interface.

 Another improvement to the plot view would be the ability to edit and remove

plots. Currently, the user is committed to his previous plot choices. If the user could

 17

change existing plots, for example changing plot order, these deficiencies would be

resolved.

 The final plot feature to include in the future would be the addition of a time

indicator. Currently, time data is hidden in parametric plots (unless time is one of the

axes of course). A valuable addition would be an ability to acquire the time value from a

particular parametric plot point.

 Some of the possible improvements are purely cosmetic, but would improve the

user experience. One would be the addition of an options screen. The colors of plot

elements are currently modifiable, for example, but the user has no way to access this

functionality from the interface. Another improvement would be to re-design the

interface for the composite instrument window. It makes much more sense to give the

user the ability to drag instruments into it; similarly to the way the plot view operates

now. In addition, the Set button could be removed, making the edit boxes modify the

linked values automatically when their value changes. Another UI change would be the

ability to drag instruments from the drawing view. Finally, the program could use a brief

introduction screen with some sort of graphic that displays for a few seconds when

EqkVis is started.

5.3: Major Features

 Besides relatively minor improvements above, there are several major features

that could be added to EqkVis. One of the major features would be the ability to view

video data inside EqkVis. If EqkVis could load videos, the user could observe recorded

footage of the earthquake tests and match it to the data in the plots. Another major

improvement would be the ability to load 3D drawings. This would involve

improvements to the exporter and the drawing view. The final major change would allow

the user to access distance data in the drawing files. Currently, EqkVis can identify

instrument position using data embedded in the drawing by the exporter. However, there

is no way to view that data or calculate something like the distance between two

instruments.

 18

6. Conclusion

 Data analysis for earthquake tests was difficult and cumbersome. The process

involved using general tools such as AutoCAD and MatLab to manipulate and visualize

the data. Since none of the tools were specifically designed for their tasks, the process

involved editing source data with a text editor to turn it into a generic representation. We

created EqkVis to streamline the workflow for earthquake data analysis. EqkVis

provides several tools that replace the elements of the previous process. EqkVis enables

the user to load the lab software output files without any manual manipulation and to

organize them according to name and data set. The user can combine the instruments that

have been loaded into another instrument using linear combinations. Finally, any

instrument can be plotted either against time or another instrument. To provide the user

with visual context, drawings can be exported from AutoCAD using an exporter. The

drawings can then be displayed in EqkVis with the option of presenting instruments in

the drawing to the user. Using the above features, EqkVis provides an integrated

collection of tools to replace the general tools that were used by the previous work

process.

