Software Visualization

Presented by Sam Dauvis

pr——— p—— <citetaes>>
<Cwirlace > Corpenatinh Sepsrew w3k arg Nedelrt
Frrawcnr . 8 [o Podege Pue
]
S ' | =
|
/ \ <comtpr> <cpanent>> Madel vl
by i R Setme scnCompt SeemerceCortd S Fadage Tan
o HTUL P aibarn FreaseConnd i o B e i
o P B P B Wbl
L1
<l
‘\ I;-I-Iul: o e [{ | SEE N
L ._':
Traesare cete!
apdtyes <camlp> e
h'llnl 'E_‘_‘im £ » L}L
4 W o Bame «cartt
“eboundary>> P 4 vas wnd 1aratons. Tomaknres
L’ o= Yy =
ety s
"‘:‘“’“ <cmmty>> ros besen ?,,
ey P

1‘________‘“
Pinfres T (ritrectnd 3 wove s Dok

i . o s e i . s

e ——

|||||||||||||||||||||||||||||||||||| H
T — d
R e
. 0
- !
7T, — |
. - |
_ ! _ : _
{ : :
: i i
- i !
_ _ i
i i 1
: i 1 i
i | | i
L | |]

p—

More than Just UML!

« UML is about static structure of software

* In terms of abstractions like
— Procedures
— Objects
— Files
— Packages

 But...

Software is Dynamic!

» Abstractions are for developers
 Users care about behaviour

* Visualize behaviour of software at run time
— Find errors
— Find performance bottlenecks

What can we visualize?

Test Results

* Hundreds, maybe thousands of tests

* For each test:
— Purpose

— Result (pass or fail)
« Could be per-configuration or per-version

— Relevant parts of the code

Detailled Execution Data

» Could be for many executions

* Dynamic events as opposed to summary
data

Summary Data: Examples

* Total running time
« Number of times a method was called
« Amount of time CPU was idle

Dynamic Events: Examples

Memory allocation

System calls

Cache misses

Page faults

Pipeline flushes

Process scheduling

Completion of disk reads or writes
Message receipt

Application phases

10

Really Detailed Execution Data

* Logging virtual machines can capture everything

— Enough data to replay program execution and
recreate the entire machine state at any point in time

— Allows “time-traveling”

— For long running systems, data could span months
» Uses:

— Debugging

— Understanding attacks

11

Strata_Various: Multi_Layer
Visualization of Dynamics in
Software System Behavior

Doug Kimelman, Bryan Rosenburg, Tova
Roth

Proc. Fifth IEEE Conf. Visualization '94, IEEE
Computer Society Press, Los Alamitos, Calif.,
1994, pp. 172-178.

Strata Various

Trace-driven program visualization
Trace: sequence of <time, event> pairs

Events captured from all layers:

— Hardware

— Operating System

— Application

Replay execution history

Coordinate navigation of event views

13

Strata_Various: Main Argument

* Debugging and tuning requires
simultaneously analyzing behaviour at
multiple layers of the system

14

Frogrsm Yiswialiselion 1.0 [C) LEA

Conmands Conf iguration Suggest

dlxzProcesslires | Dicaph

ClunTduretion Fils

ayaten.cfy

13li- nrame

. EmEEEMAT

AixSyztemState | ColorStreip

AixBLualy | LineGraph

i _ Il ‘
f J‘\ e P II | LAI_LH LJ"H ’JV__I

AixPhoze |

Thas 1.503505
Lag]
Wit |

Frace Filr Position

rarzs Fide | Zvrefiafrararinore P

|Fl—i|'|e'.1.r.p'l.I opflioation.ofy

T'H b

FdAN-F

16607 a_xlel

77l kproc

13210 and

S — -_

—_—

IR BFsd

HHON il

114749 nf:al
10530 nfwd

11092 pled

Alx¥ullowe | Onpcendpeace

LA IS

17001 cvon

_—— —

16

— Progrom Yizenlization 1.0 (C) IDH | -

Commands Couf igeeration Suggest Helg

I e
Spewd .E'fmr
_l

Frace Filr Position

rarzs Fide | Zvrefiafrararinore P

p-nro.of g

[k THREE TIT T L

Hr . Al :Ilﬂ'.LI-.‘.-I.-'-I-' L

. 17y
L 21 P mark e
LTS N
pr i =
[] SN
1 [N
i Fay
= Ap-ne
-y
H -4
: 4 -0t
i 3
] = -
L%
i3

|
Z

T EH NN TTHEN

AN NN e M EDE BN CIMEC o

v

Siop-on

2E=30

it it N

Hze-d0

I =kl

=l

huxProfile

I Qo3 prac:

—_—

RIE LA

SOd ol

S0l eldegl

Toe-01 C0J el

Fob b T e D

AR

LRI

WoE~0B TOJolockd

S07ci0en:

A ixPruc

Lllee tywacc

SHAR Leans

11 AR e

101 plere

2o @il mim s
20 @1 miEE

(NS BT

[N RITer

Sze=O0 T07elgesl
Sze-0l T0Jelges

=R I R

A e L

|

Strata Various: Critique

Examples demonstrate usefulness

Fundamentally, a good idea

— Increasing importance as multi-core machines
become standard

Many windows
— Titles not meaningful
— Virtual reality cop-out

Dubious claim that tracing does not alter
behaviour

18

SeeSoft

e Zoomed out view of source code

— Lines of code displayed as thin horizontal
lines

— Preserve indentation, length
— Can colour lines according to data

 Link with readable view of code
* Allows tying data to source code

Stephen G. Eick, Joseph L. Steffen and Eric E. Sumner, Jr. “SeeSoft — A Tool
for Visualizing Line-Oriented Software Statistics.” IEEE Transactions on
Software Engineering, 18(11):957-968, November 1992. 19

SeeSoft Example

Visually Encoding
Program Test Information to Find

Faults in Software

(Tarantula)

James Eagan, Mary Jen Harrold, James A.
Jones, and John Stasko, Proc. InfoVis 2001
pp. 33-36.

Tarantula

 Extends SeeSoft idea

* Defines colour mapping for LOC based on
test results

» Goal: use test results to identify broken
code

22

Tarantula

* |nput:
— For each test:
 Test number

« Result (pass or fail)
» Test coverage (list of line numbers)

23

Tarantula: Discrete Colour Mapping

« Based on user tests
* Black background

» Colour each line
— Red if executed by failed tests
— Green if executed by passed tests
— Yellow if executed by both

24

Tarantula: Continuous Colour
Mapping

« Extend discrete colour mapping by
— Interpolating between red and green

— Adjusting brightness according to number of
tests

* Possibilities:
— Number of passed or failed tests

— Ratio of passed to failed tests
— Ratio of % passed to % failed

25

Tarantula: Continuous Colour
Mapping

e Foreachline L

— Let p and f be the percentages of passed and
failed tests that executed L

—Ifp=1=0, colour L grey
— Else, colour L according to

« Hue:p/(p+f),where Oisred and 1 is green
 Brightness: max(p, f)

26

& el
£

File

Tarantula Bugy Finder

i Default) Discrete ® Continuous) Passes O Fails O Mixed I B

1 Line: 6862

Test: |%

e 'H||||N|‘|l||ﬂ II”HW

Al
T ——

-_—
—
——
[—
P —
—
—
fr—
=
e —
[e —

F Y

1 (error = 0) al-LIne GREG 2
*podim_unit_ptr = 0; Executions: 66 f 200
Passed: 63 f 297
Failed: 2 f 3

L

27

Al Tarantula Bugy Finder
File

) Default) Discrete Continuous (' Passes @ Fails) Mixed L Lok

1 Line: 6862

Test: |

[4]

-|-Lina 68&2

Executions: 66 f 300
Passed: 63 f 297
Failed: 3 f 3

T—

28

Tarantula: Critique

Visualizing test results could be useful,
this is a first step

Future work: does colouring help to find
broken code?

Colouring: simple idea made complex
Tests identified only by number
— Better: name tests

— Better still: can we visualize the meaning of
tests?

29

Visualization of Program-
Execution Data for Deployed

Software

(Gammatella)

Alessandro Orso, James Jones, and Mary
Jean Harrold.

Proc. of the ACM Symp. on Software
Visualization, San Diego, CA, June 2003,
pages 67--76.

Gammatella

» Collection and storage of program-
execution data

* Visualization of data about many
executions

31

Gammatella: Executions

Code coverage and profiling data

Execution properties
- 0OS

— Java version

— Etc.

Filters
— Boolean predicate logic

Summarizers

32

Gammatella: Coloured, Tri-Level
Representation

System level
— Treemap of package/class hierarchy

File level:
— SeeSoft-like view of code

Statement level:
— Source code (coloured text)

Colours based on exceptions
— Other colourings possible, e.g. profiling data

33

-
»

IJ.

III: _

IU-LL

* i !

|

| -

Al Giess |

One Level Treemap

« Layout algorithm for treemap of depth 1
— Preserves relative placement of colours

=
=
Hue
1] {ch {d) (e

35

=3

(UL

4
S0 Aed

[TaCTT [T 1T T]

| LIS

SR T |

All Camnn

Execulion

M~ |
el
T T (Al T AT e

Lol T

Svsrem level

Srarement level

Dartatane T

I o

]
Pnuse 5 o Line Mol 304 of jabasy m Sy e Tabie

HamedPeferenoe [sfiber an Inbedace ora

Bar

Code

Treemap Viewer

Viewer

Lowraraials S vars

Sy imbiolT s

I‘M’r]ﬂ"-i'i L I‘W Lol ﬂF‘WI
TN e

TN

VTR
TG P)

T
e
AL

36

Gammatella: Critique

« Complete system — not just a visualization
 Effectively links code to structure

 Trial usage discovered useful but high-
level information

— Mainly relied on system view

— Would be nice to see examples using file and
statement level views

37

Visualizing Application Behavior
on Superscalar Processors

Chris Stolte, Robert Bosch, Pat
Hanrahan, and Mendel Rosenblum

Proc. InfoVis 1999

Superscalar Processors: Quick
Overview

Pipeline

Multiple Functional Units

— Instruction-Level Parallelism (ILP)
Instruction Reordering

Branch Prediction and Speculation

Reorder Buffer
— Instructions wait to graduate (exit pipeline)

39

. We are able to focus the area of interest to
(3) 2000 cycles -- few enough cycles that we
~ can use animation for further investigation.

2 i
B ceceptionFiush I:'} bore B o stai

_ The instruction mix chart lets us see what
rﬂj types of instructions are in the pipeline
during the time interval of interest.

- Empty/Teac - Issua/Functional Linit

/

_ There are periods of increased
2) pipeline stall throughout the
execution

The overview displays stall and
(T:] throughput infermation for the
entire execution.

40

Dependencies appear as yellow
lines between instructions

If an instruction is speculated,

ts border is orange - N

P, -d_'_'_'_,__,-
_,-ll-"'j.;':-
N

"'\-\.H

Instructions not yet completed
appear faded in the reorder

: : : buffer
The instruction which must

graduate next is indicated by a
vellow border and red arrow

42

_ The source code view shows that this
-\ . 1 H 1 r r)
@.,' corresponds to a tight loop within the The pipeline view shows that there
application. @ are cascading dependencies between a
—— series of floating point instructions and
memaory references.

=

1 = bhrkfoint e+ 1
bralajc = 1] = Qud:-
for (m = r=I: 3 = O

=+
ir i 1]

ormga = fu = Eeli]] § (kr[L 4+ ¢ = 17 =
Eralm[m + 1] = bwalm|= + 1] & [1 - orsga)
Eralm[n] = omsga ¥ bvsla[=] ;

=y We select a single cycle in this area of

Flaating-Paint .@/‘]
L interest and start animation from this cycle.

Load/Stors

100000 150000

: | 1
B GocoptionFlush neclSigg B Ereby/lcac] Tssue/Functional Unik

We inspect the transition between phases

The timeline view reveals periodic C in the instruction mix and see plateaus of

-
(D phases of execution, one with very £/ floating point instructions corresponding to
low throughput. the low throughput regions.

Full reorder
buffer

Stalled load
instruction

Memory stall

44

Dependencies
exist between
all of these
instructions

Paarrier Fufer
e 10,871,814
[R il!-..a'_ﬂ

L

sl B R

m;-_:l.l.

R vree

vl n BIEBV LA

ot tH 8% rerc

[T

e | BH2 B b

wicha ﬁlﬂ-ﬁl
i

Instructions

are being

executed

e | BRI AHID
MOen &2,

ak &
ITii Tl L ey
bl FHLOLa0)

Tmsl ﬁﬂ-ﬂF

Ul 1
moe s BRLDLFFE

sequentially

Dependencies

45

Speculated
branch
instructions

No
Instructions
are being
fetched

Deep speculation

46

Mispredicted
branch

Squashed
instructions

Branch misprediction

47

Critique

Most code doesn’t need this level of
optimization, but

— The visualization is effective, and would be
useful for code that does

— May reduce the expertise needed to perform
low level optimzation

Might be effective as a teaching tool
Bad color scheme: black/purple/brown
Does it scale with processor complexity?

48

Papers

« D. Kimelman, B. Rosenburg, and T. Roth,
“Strata-Various: Multi-Layer Visualization of
Dynamics in Software System Behavior,” Proc.
Fifth IEEE Conf. Visualization '94, IEEE
Computer Society Press, Los Alamitos, Calif.,
1994, pp. 172-178.

« James Eagan, Mary Jen Harrold, James A.
Jones, and John Stasko, "Visually Encoding
Program Test Information to Find Faults in
Software." Proc. InfoVis 2001 pp. 33-36.

49

Papers

* Alessandro Orso, James Jones, and Mary Jean
Harrold. "Visualization of Program-Execution
Data for Deployed Software." Proc. of the ACM
Symp. on Software Visualization, San Diego, CA,
June 2003, pages 67--70.

e Chris Stolte, Robert Bosch, Pat Hanrahan, and
Mendel Rosenblum, "Visualizing Application

Behavior on Superscalar Processors." Proc.
InfoVis 1999

50

