Software Visualization

Presented by Sam Dauvis
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More than Just UML!

« UML is about static structure of software

* In terms of abstractions like
— Procedures
— Objects
— Files
— Packages

 But...



Software is Dynamic!

» Abstractions are for developers
 Users care about behaviour

* Visualize behaviour of software at run time
— Find errors
— Find performance bottlenecks



What can we visualize?



Test Results

* Hundreds, maybe thousands of tests

* For each test:
— Purpose

— Result (pass or fail)
« Could be per-configuration or per-version

— Relevant parts of the code



Detailled Execution Data

» Could be for many executions

* Dynamic events as opposed to summary
data



Summary Data: Examples

* Total running time
« Number of times a method was called
« Amount of time CPU was idle



Dynamic Events: Examples

Memory allocation

System calls

Cache misses

Page faults

Pipeline flushes

Process scheduling

Completion of disk reads or writes
Message receipt

Application phases
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Really Detailed Execution Data

* Logging virtual machines can capture everything

— Enough data to replay program execution and
recreate the entire machine state at any point in time

— Allows “time-traveling”

— For long running systems, data could span months
» Uses:

— Debugging

— Understanding attacks
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Strata_Various: Multi_Layer
Visualization of Dynamics in
Software System Behavior

Doug Kimelman, Bryan Rosenburg, Tova
Roth

Proc. Fifth IEEE Conf. Visualization '94, IEEE
Computer Society Press, Los Alamitos, Calif.,
1994, pp. 172-178.



Strata Various

Trace-driven program visualization
Trace: sequence of <time, event> pairs

Events captured from all layers:

— Hardware

— Operating System

— Application

Replay execution history

Coordinate navigation of event views
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Strata_Various: Main Argument

* Debugging and tuning requires
simultaneously analyzing behaviour at
multiple layers of the system
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Strata Various: Critique

Examples demonstrate usefulness

Fundamentally, a good idea

— Increasing importance as multi-core machines
become standard

Many windows
— Titles not meaningful
— Virtual reality cop-out

Dubious claim that tracing does not alter
behaviour
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SeeSoft

e Zoomed out view of source code

— Lines of code displayed as thin horizontal
lines

— Preserve indentation, length
— Can colour lines according to data

 Link with readable view of code
* Allows tying data to source code

Stephen G. Eick, Joseph L. Steffen and Eric E. Sumner, Jr. “SeeSoft — A Tool
for Visualizing Line-Oriented Software Statistics.” IEEE Transactions on
Software Engineering, 18(11):957-968, November 1992. 19



SeeSoft Example




Visually Encoding
Program Test Information to Find

Faults in Software

(Tarantula)

James Eagan, Mary Jen Harrold, James A.
Jones, and John Stasko, Proc. InfoVis 2001
pp. 33-36.



Tarantula

 Extends SeeSoft idea

* Defines colour mapping for LOC based on
test results

» Goal: use test results to identify broken
code
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Tarantula

* |nput:
— For each test:
 Test number

« Result (pass or fail)
» Test coverage (list of line numbers)
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Tarantula: Discrete Colour Mapping

« Based on user tests
* Black background

» Colour each line
— Red if executed by failed tests
— Green if executed by passed tests
— Yellow if executed by both
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Tarantula: Continuous Colour
Mapping

« Extend discrete colour mapping by
— Interpolating between red and green

— Adjusting brightness according to number of
tests

* Possibilities:
— Number of passed or failed tests

— Ratio of passed to failed tests
— Ratio of % passed to % failed
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Tarantula: Continuous Colour
Mapping

e Foreachline L

— Let p and f be the percentages of passed and
failed tests that executed L

—Ifp=1=0, colour L grey
— Else, colour L according to

« Hue:p/(p+f),where Oisred and 1 is green
 Brightness: max( p, f)
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Tarantula: Critique

Visualizing test results could be useful,
this is a first step

Future work: does colouring help to find
broken code?

Colouring: simple idea made complex
Tests identified only by number
— Better: name tests

— Better still: can we visualize the meaning of
tests?
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Visualization of Program-
Execution Data for Deployed

Software

(Gammatella)

Alessandro Orso, James Jones, and Mary
Jean Harrold.

Proc. of the ACM Symp. on Software
Visualization, San Diego, CA, June 2003,
pages 67--76.



Gammatella

» Collection and storage of program-
execution data

* Visualization of data about many
executions
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Gammatella: Executions

Code coverage and profiling data

Execution properties
- 0OS

— Java version

— Etc.

Filters
— Boolean predicate logic

Summarizers
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Gammatella: Coloured, Tri-Level
Representation

System level
— Treemap of package/class hierarchy

File level:
— SeeSoft-like view of code

Statement level:
— Source code (coloured text)

Colours based on exceptions
— Other colourings possible, e.g. profiling data

33
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One Level Treemap

« Layout algorithm for treemap of depth 1
— Preserves relative placement of colours
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Gammatella: Critique

« Complete system — not just a visualization
 Effectively links code to structure

 Trial usage discovered useful but high-
level information

— Mainly relied on system view

— Would be nice to see examples using file and
statement level views
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Visualizing Application Behavior
on Superscalar Processors

Chris Stolte, Robert Bosch, Pat
Hanrahan, and Mendel Rosenblum

Proc. InfoVis 1999



Superscalar Processors: Quick
Overview

Pipeline

Multiple Functional Units

— Instruction-Level Parallelism (ILP)
Instruction Reordering

Branch Prediction and Speculation

Reorder Buffer
— Instructions wait to graduate (exit pipeline)
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. We are able to focus the area of interest to
(3) 2000 cycles -- few enough cycles that we
~  can use animation for further investigation.

2 i
B ceceptionFiush I:'} bore B o stai

_ The instruction mix chart lets us see what
rﬂj types of instructions are in the pipeline
during the time interval of interest.

- Empty/Teac - Issua/Functional Linit

/

_ There are periods of increased
2) pipeline stall throughout the
execution

The overview displays stall and
(T:] throughput infermation for the
entire execution.
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Dependencies appear as yellow
lines between instructions

If an instruction is speculated,

ts border is orange - N
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Instructions not yet completed
appear faded in the reorder

: : : buffer
The instruction which must

graduate next is indicated by a
vellow border and red arrow
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_ The source code view shows that this
-\ . 1 H 1 r r )
@.,' corresponds to a tight loop within the The pipeline view shows that there
application. @ are cascading dependencies between a
—— series of floating point instructions and
memaory references.
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Full reorder
buffer

Stalled load
instruction

Memory stall
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Dependencies
exist between
all of these
instructions
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Speculated
branch
instructions

No
Instructions
are being
fetched

Deep speculation
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Mispredicted
branch

Squashed
instructions

Branch misprediction
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Critique

Most code doesn’t need this level of
optimization, but

— The visualization is effective, and would be
useful for code that does

— May reduce the expertise needed to perform
low level optimzation

Might be effective as a teaching tool
Bad color scheme: black/purple/brown
Does it scale with processor complexity?
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Papers
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