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Today

• Problem Overview

• Direct Visualization Approaches
– Dimensional anchors

– Scagnostic SPLOMs

• Nonlinear Dimensionality Reduction
– Locally Linear Embedding and Isomaps

– Charting manifold
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Problems with visualizing high dimensional data

• Visual cluttering

• Clarity of representation

• Visualization is time consuming
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Classical methods
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Multiple Line Graphs

Pictures from Patrick Hoffman et al. (2000)
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Multiple Line Graphs

- Hard to distinguish dimensions if multiple line graphs overlaid

- Each dimension may have different scale that should be shown

- More than 3 dimensions can become confusing

Advantages and disadvantages:
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Scatter Plot Matrices

Pictures from Patrick Hoffman et al. (2000)
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Scatter Plot Matrices

+ Useful for looking at all possible two-way interactions between dimensions

- Becomes inadequate for medium to high dimensionality

Advantages and disadvantages:
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Bar Charts, Histograms

Pictures from Patrick Hoffman et al. (2000)
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Bar Charts, Histograms

+ Good for small comparisons

- Contain little data

Advantages and disadvantages:
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Survey Plots

Pictures from Patrick Hoffman et al. (2000)
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Survey Plots

+ allows to see correlations between any two variables when the data
is sorted according to one particular dimension

- can be confusing

Advantages and disadvantages:
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Parallel Coordinates

Pictures from Patrick Hoffman et al. (2000)
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Parallel Coordinates

+   Many connected dimensions are seen in limited space

+   Can see trends in data

- Become inadequate for very high dimensionality

- Cluttering

Advantages and disadvantages:
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Circular Parallel Coordinates

Pictures from Patrick Hoffman et al. (2000)
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Circular Parallel Coordinates

+   Combines properties of glyphs and parallel coordinates making
pattern recognition easier

+   Compact

- Cluttering near center

- Harder to interpret relations between each pair of dimensions than
parallel coordinates

Advantages and disadvantages:
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Andrews’ Curves

Pictures from Patrick Hoffman et al. (2000)
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Andrews’ Curves

+   Allows to draw virtually unlimited dimensions

- Hard to interpret

Advantages and disadvantages:
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Radviz

Radviz employs spring model

Pictures from Patrick Hoffman et al. (2000)
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Radviz

+   Good for data manipulation

+   Low cluttering

- Cannot show quantitative data

- High computational complexity

Advantages and disadvantages:
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Dimensional Anchors
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Attempt to Generalize
Visualization Methods

for
High Dimensional Data



23

What is dimensional anchor?

Picture from members.fortunecity.com/agreeve/seacol.htm & http://kresby.grafika.cz/data/media/46/dimension.jpg_middle.jpg
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What is dimensional anchor?

Nothing like that

DA is just an axis line… ϑ

Anchorpoints are coordinates… ϑ
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Parameters of DA

Scatterplot features

– Size of the scatter plot points

– Length of the perpendicular lines extending from individual anchor
points in a scatter plot

– Length of the lines connecting scatter plot points that are associated
with the same data point
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Parameters of DA

Survey plot feature

4. Width of the rectangle in a survey plot

Parallel coordinates features

5. Length of the parallel coordinate lines

6.  Blocking factor for the parallel coordinate lines
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Parameters of DA

Radviz features

7. Size of the radviz plot point

8. Length of “spring” lines extending from individual anchor points of radviz
plot

9. Zoom factor for the “spring” constant K
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DA Visualization Vector

P (p1,p2,p3,p4,p5,p6,p7,p8,p9)
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DA describes visualization for any
combination of:

• Parallel coordinates

• Scatterplot matrices

• Radviz

• Survey plots (histograms)

• Circle segments
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Scatterplots

2 DAs, P = (0.8, 0.2, 0, 0, 0, 0, 0, 0, 0) 2 DAs, P = (0.1, 1.0, 0, 0, 0, 0, 0, 0, 0)

Picture from Patrick Hoffman et al. (1999)
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Scatterplots with other layouts

3 DAs, P = (0.6, 0, 0, 0, 0, 0, 0, 0, 0) 5 DAs, P = (0.5, 0, 0, 0, 0, 0, 0, 0, 0)

Picture from Patrick Hoffman et al. (1999)
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Survey Plots

P = (0, 0, 0, 0.4, 0, 0, 0, 0, 0) P = (0, 0, 0, 1.0, 0, 0, 0, 0, 0)

Picture from Patrick Hoffman et al. (1999)
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Circular Segments

P = (0, 0, 0, 1.0, 0, 0, 0, 0, 0)

Picture from Patrick Hoffman et al. (1999)
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Parallel Coordinates

P = (0, 0, 0, 0, 1.0, 1.0, 0, 0, 0)

Picture from Patrick Hoffman et al. (1999)
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Radviz like visualization

P = (0, 0, 0, 0, 0, 0, 0.5, 1.0, 0.5)

Picture from Patrick Hoffman et al. (1999)
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Playing with parameters

Crisscross layout with
P = (0, 0, 0, 0, 0, 0, 0.4, 0, 0.5)

Parallel coordinates with
P = (0, 0, 0, 0, 0, 0, 0.4, 0, 0.5)

Pictures from Patrick Hoffman et al. (1999)
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More?

Pictures from Patrick Hoffman et al. (1999)
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Scatterplot Diagnostics

or

Scagnostics
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Tukey’s Idea of Scagnostics

• Take measures from scatterplot matrix

• Construct scatterplot matrix (SPLOM) of these measures

• Look for data trends in this SPLOM
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Scagnostic SPLOM

Is like:
• Visualization of a set of pointers

Also:
• Set of pointers to pointers also can be constructed

Goal:
• To be able to locate unusual clusters of measures that characterize

unusual clusters of raw scatterplots
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Problems with constructing
Scagnostic SPLOM

1) Some of Tukeys’ measures presume underlying continuous
empirical or theoretical probability function. It can be a
problem for other types of data.

2) The computational complexity of some of the Tukey
measures is O( n_ ).
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Solution*

1. Use measures from the graph-theory.
– Do not presume a connected plane of support
– Can be metric over discrete spaces

2. Base the measures on subsets of the Delaunay
triangulation
• Gives O(nlog(n)) in the number of points

3. Use adaptive hexagon binning before computing to
further reduce the dependence on n.

4. Remove outlying points from spanning tree

* Leland Wilkinson et al. (2005)
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Properties of geometric graph for
measures

• Undirected (edges consist of unordered pairs)

• Simple (no edge pairs a vertex with itself)

• Planar  (has embedding in R2 with no crossed edges)

• Straight  (embedded eges are straight line segments)

• Finite  (V and E are finite sets)
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Graphs that fit these demands:

• Convex Hull

• Alpha Hull

• Minimal Spanning Tree
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Measures:

• Length of en edge

• Length of a graph

• Look for a closed path (boundary of a polygon)

• Perimeter of a polygon

• Area of a polygon

• Diameter of a graph



46

Five interesting aspects of scattered points:

• Outliers
– Outlying

• Shape
– Convex
– Skinny
– Stringy
– Straight

• Trend
– Monotonic

• Density
– Skewed
– Clumpy

• Coherence
– Striated
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Classifying scatterplots

Picture from L. Wilkinson et al. (2005)
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Looking for anomalies

Picture from L. Wilkinson et al. (2005)
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Picture from L. Wilkinson et al. (2005)
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Nonlinear Dimensionality Reduction (NLDR)

Assumptions:
• data of interest lies on embedded nonlinear manifold

within higher dimensional space
• manifold is low dimensional ⇒ can be visualized in low

dimensional space.

Picture from: http://en.wikipedia.org/wiki/Image:KleinBottle-01.png
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Manifold

Topological space that is “locally Euclidean”.

Picture from: http://en.wikipedia.org/wiki/Image:Triangle_on_globe.jpg
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Methods

• Locally Linear Embedding

• ISOMAPS
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Isomaps Algorithm

1. Construct neighborhood graph

2. Compute shortest paths

3. Construct d-dimensional embedding (like in MDS)

Picture from: Joshua B. Tenenbaum et al. (2000)
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Pictures taken from http://www.cs.wustl.edu/~pless/isomapImages.html
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Locally Linear Embedding (LLE) Algorithm

Picture from Lawrence K. Saul at al. (2002)
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        Original         Sample      Mapping by LLE

Application of LLE

Picture from Lawrence K. Saul at al. (2002)
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Limitations of LLE

• Algorithm can only recover embeddings whose dimensionality, d, is
strictly less than the number of neighbors, K. Margin between d and
K is recommended.

• Algorithm is based on assumption that data point and its nearest
neighbors can be modeled as locally linear; for curved manifolds,
too large K will violate this assumption.

• In case of originally low dimensionality of data algorithm
degenerates.
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Proposed improvements*

• Analyze pairwise distances between data points instead
of assuming that data is multidimensional vector

• Reconstruct convex

• Estimate the intrinsic dimensionality

• Enforce the intrinsic dimensionality if it is known a priori
or highly suspected

* Lawrence K. Saul at al (2002)
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Strengths and weaknesses:

• ISOMAP handles holes well

• ISOMAP can fail if data hull is non-convex

• Vice versa for LLE

• Both offer embeddings without mappings.
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Charting manifold
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Algorithm Idea

1) Find a set of data covering locally linear neighborhoods (“charts”) such
that adjoining neighborhoods span maximally similar subspaces

2) Compute a minimal-distortion merger (“connection”) of all charts
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Picture from Matthew Brand (2003)
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Video test

Picture from Matthew Brand (2003)
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Where ISOMAPs and LLE fail,
Charting Prevail

Picture from Matthew Brand (2003)
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Questions?
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