Information Visualization: Glyphs

CPSC 533 Topic Presentation Clarence Chan Nov. 21, 2006

Presentation Outline

- Glyphs: Definition
- Basics Of Encodings
- Glyph Discernability
- Placement As Encoding

- Informally, what is a glyph?
 - A "thing"
 - A marker
- In some circles, is seen as a linguistic construct of sorts
 - But what does it represent?
 - What is its meaning?

(Ware, 2004)

- InfoViz literature: we see that glyphs represent data
 - But how?
- "Thing" or "marker" implies a discrete nature
- Also referred to as "icons" (Ward)

... Why?

- What aspects of the data are expressed in a glyph?
 - Uninteresting unless non-trivial set of attributes
 - Multivariate data
- Thus, it encodes more than one dimension by its very nature
- How does it do it?
 - A "thing" that encodes "multiple attributes"
 - Is an entire viz system a glyph?
 - Do you really see it as a "thing"?

- Clearly we're getting into fuzzy territory
 - (Unclear if this is a problem in the community)
 - Definition problem arose as I looked through papers
- So let's adapt definition from Ward ...

- A glyph is a single visual perceptual entity whose existence encodes a non-trivial number of dimensions of a given datapoint or set of datapoints
 - (note italics)

- A glyph is a single visual perceptual entity whose existence encodes a non-trivial number of dimensions of a given datapoint or set of datapoints
 - Remember, much like "icons" ...
 - Glyphs abstract, encapsulate, yet exist as "one"
 - Does not discount aggregation

Presentation Outline

- Glyphs: Definition
- Basics Of Encodings
- Glyph Discernability
- Placement As Encoding

- So given our definition, what can we encode?
- How can we encode it?
- Some examples

- Data: n-dimensional, captured in discrete format
- Most familiar case: discretize the "continuous", aggregate
- i.e. Map data
- Individual glyphs aggregate data of several dimensions over a region

(Yost & North, 2001)

- More obscure example: Software visualization
- TimeWheel: each item on the wheel is a trend graph depicting change over time
- N dimensions, each aggregated over time
- Abstracts away individual data points

- Per-datapoint encodings
- Encode each datapoint directly as a glyph
- If the data set is big though, we like to see them in aggregate ...

C7

Star Coordinates

(Kandogan, 2001)

- Star Coordinates: much like conventional Cartesian systems
- There are n "arms" that act as axes in the SC space
- Location of glyph on 2-D SC space is simply vector sum of each arm for that datapaint

C₇

- Ambiguity?
- (more later)

(Kandogan, 2001)

- Another per-datapoint encoding:
- Chernoff faces
- Different attributes of faces represent diff dimensions
- Notion of icons, human interpretability

Presentation Outline

- Glyphs: Definition
- Basics Of Encodings
- Glyph Discernability
- Placement As Encoding

- How to make use of our visual params?
- The standard dimensional encodings
 - Space, shape, orientation
 - Color, Iuminance
 - Location
- It depends on the task though
 - What do we want to do with glyphs?
 - Compare within dimensions? Across dimensions?
 - Within/across datapoints / datasets?

- Intra-glyph discernability
 - Within a glyph, compare and correlate dimensions
 - Ability to isolate a single dimension for analysis
 - Separable vs. integral visual parameters
 - Many of the standard ideas apply

(Ware, 2004)

- Intra-glyph discernability
- Integral pairs are very hard to separate out
- Raises the question:
- Is it worth it to overload?
- Can we re-use dimensions?

- Glyphs have very particular nature in this regard
- Compare and contrast with "small multiples"
- Yost paper:
 - Compare overloaded encodings to multiple view encodings

Tasks + views

Figure 1. Integrated, 1 view. Data attributes mapped to color, size, density, and orientation.

	-	-	-	-	-	-	-	-													-	-	-	-	-	-	-	-	-	-								ŀ
	-	-	-	-	-	-	-	-	-	-	-			-	-					-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
		-	-				-	-	-	-		-		-							-					-	-	-		-	-	-	-	-	-	-	-	
	-	-	-	-	_	_	-	-	-	-	-	-		-							-	_	_	_	-	-	-	-	-	_	-	-	-	-	-	-	-	
	-	_	_	_	_	_	_	-	-	-	_	-	-	-							-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-		
	14	_	_	_	_	_	_	_	-	-	_	-	2										_	-	-	-	_	-		_	-	-	_	-	-			
						-	-		-	-			-													12	-			-	-	-						
						_	_					. 1	-	÷.														12	_							-		
-																																						
	-				-		۰.								1				-									3										
logend																								18	-													
and a											-	-													-	÷.												
		1.14	60 L	1.14	E I	40								1	11	-82	La i	40	10	104																		
(inter-		-		-			-					ы.				_	_		_		-																	
					-		-				4										۰.																	
			14	4.5	14	2.0		14						1.1	а.	1.0	64	21.1	62	18																		

Figure 2. Dual, 2 views. Color and size used in both.

Figure 3. Multiple, 4 views. Color used in all four.

	Most important attribute, Best visual encoding	Less important attribute, Not best visual encoding
Detect:One	Which state has the	Which state has the
attribute	lowest A value?	highest D value?
Detect: Two attributes	Which state has the medium low A value and the low B value?	Which state has the medium low A value and the medium C value?
Trend:	What's the trend	What's the trend from
One	from West to East in	North to South in
attribute	terms of A value?	terms of D value?
Trend:	What's the	What's the
Two	relationship between	relationship between
attributes	A and B?	A and C?

- Best practice appears to be:
 - Re-use and recycle!
 - Overloaded glyphs = integral dimension problem
 - The encoding of the glyph itself takes precedence
 - Relative judgements:
 - # views doesn't matter, but choice of encoding does
 - # views still has effect on encoding choice though:
 - Don't pick an integral one!

- In re-using dimensions:
 - Allows for easier comparison and visual separation
 - However, may need more real estate
- But where do we draw the line?
 - Is it really a single perceptual unit anymore?

(Chuah & Eick, 1997)

- CodeBug:
 - Wings represent lines of code, # errors
 - Other information: # file changes, inheritance level ...
 - Shape and size re-used for many dimensions
 - But is it as easy to correlate dimensions anymore?

(Chuah & Eick, 1997)

- Inter-glyph discernability: compare single dimension across multiple glyphs
- More standard principles for relative judgements:
 - Straight lines, cardinal directions, discrete colors
 - Minimize interference from integral dimensions
- Star Coordinates:
 - Standard encoding for every dimension, flexible
 - Even lets you see correlations to some degree
 - Can even let you see correlations across multiple glyphs
 - (demo)

Presentation Outline

- Glyphs: Definition
- Basics Of Encodings
- Glyph Discernability
- Placement As Encoding

- Notice that it uses location and placement as key component of encoding
- There are many ways to do location (Kandogan)

- Data-driven placement
 - Direct mapping from data to on-screen location
 - Can be raw (star coordinates) or derived (MDS, PCA)
 - Raw = direct, exact, Derived = fuzzy semantics
- Structure-driven placement
 - Analytic structure is posited atop data
 - What do I mean?

- Structure-driven placement, cont:
 - Explicit graph structure or tree structure
 - Compare with star co-ordinates: clusters make themselves obvious

Ð 🗇

4		1				4															4		
	-				4	E.											+				4		
	1				4					+				4					4	4	4		4
					+					Ł	4	4	5	4					۵		4	E.	
										÷			6			4			۵.		۵.	ē.	۵.
					4				4	£.			÷	\overline{a}	\oplus	\overline{T}	÷		Φ		Φ	\pm	\overline{T}
-9-	2	÷	÷	÷	Δ	÷				Φ	÷			4			Φ	Φ	\oplus		$\overline{\Delta}$		Φ
\Rightarrow	+	Φ	\oplus	\oplus	\oplus	÷					6	ь.					Φ		\oplus		÷.		
\oplus	\oplus	\Rightarrow	\Rightarrow	\oplus	\oplus	\oplus					Φ	Φ	\oplus	Φ		$\overline{\mathbf{v}}$	÷	\oplus	Φ		÷		Φ
-	÷	÷	÷	\oplus	\oplus	-			\Rightarrow	\oplus		\oplus				\oplus		\oplus	Φ	÷	-1-	Φ	÷
			-		÷				\Rightarrow	Φ		\oplus		Φ		\oplus		\oplus	Φ		\oplus	Φ	÷
									\oplus	\oplus		Φ	\oplus	\oplus	\oplus	Φ	\oplus		\oplus	\oplus		÷	
					Ð				\oplus	\oplus		÷		$\hat{\Phi}$	\oplus		\oplus	\oplus	\oplus		÷÷		÷
	-	\Rightarrow	\oplus	P	\Rightarrow	Þ			-		÷	Φ	\oplus		÷		Φ	Φ		Ð		\oplus	
÷									-1-	de-	-	÷		4		Ð		\oplus					

- Glyph is given meaning not only in and of itself ۲ but relative to others
- Space is one of the best ways to order / ۲ structure data

					1						4
		4				-					
		1									
		4									
		÷									
	- L	Φ	Φ	Φ	Φ	+	Φ	\oplus	÷	÷	Φ
- 4	• +	\oplus	÷	Φ	Φ	\oplus	Φ	\rightarrow	\oplus	\oplus	\oplus
4	-	Φ	÷	Φ	Φ	Φ	Φ	\oplus	\oplus	\oplus	Φ
-	•	÷	Ð	÷		Ð	\oplus	÷	÷	÷	Ð
		÷									
						-					÷
							Y	∇	Ψ	Y	Y
- 71	2	Þ	P	P	P						

Presentation Outline

- Glyphs: Definition
- Basics Of Encodings
- Glyph Discernability
- Placement As Encoding
- Conclusion

Conclusion

- Glyph design and placement is a tricky process
 - Tricky to define, tricky to design
- Many interfering and confounding factors
 - Simple approaches still outweigh overloaded encodings (Yost)
 - Concepts are generalizable and applicable in other areas of viz
 - (Texture, small multiples as seen through a glyph framework?)
- Questions?