
Elision Based Text Zooming

Sam Davis*

University of British Columbia

ABSTRACT

Scrolling through text documents is a cumbersome and
ineffective means of getting context and overview. I present a
superior technique that augments scrolling by using elision to
simulate zooming. This allows smooth, rapid transitions between
overview and detail and effectively supports the task of recovering
lost context when reading or navigating through a document. I
describe an implementation of the technique for a popular web
browser.

CR Categories and Subject Descriptors:
Additional Keywords:

1 INTRODUCTION

While scrolling might be thought of primarily as a method of
navigation, in the domain of text documents, it is also typically
the only method of providing overview and focus+context. Where
an overview is not explicitly provided as part of the document, or
where an overview is provided but is not sufficiently detailed,
users often scroll through the entire document in an attempt to
understand its overall structure. When reading the document,
scrolling to nearby locations is used to provide context.

Unfortunately, scrolling is poorly suited to these tasks. For all
but the shortest of text documents, scrolling from beginning to
end must either take unreasonably long or cause text to rapidly fly
by in a blur that conveys little or no information. Attempting to
compromise between these two extremes by scrolling in
increments is still time consuming, is cumbersome, and does not
make the important parts of the document easy to find – the
scrolling process is not sufficiently more likely to pause when
something important is in view than when something unimportant
is in view.

Scrolling also hampers the process of getting context, because
the time and cognitive effort expended in moving back and forth
between related parts of the document via the scrollbar may cause
the user to forget what they were looking for, or why they were
looking for it.

While scrolling is adequate for navigation, it is still not easy to
navigate to an item of interest, unless one knows exactly how far
it is from the beginning or end of the document. The ability to
search the text for keywords can be helpful, but it fails when the
user does not know the precise words used in the interesting part
of the document, and when the search yields too many results.
Personal experience suggests that many users tend not to use text
search features, perhaps because they often require using both the
keyboard and the mouse, and take too long to return results.
Another reason may be that there is generally no automatic way to
return to the location that was in view prior to initiating the
search, so the user gets lost.

This paper explores the application of elision to simulate
zooming, in an attempt to support context and overview more
naturally.

The paper is structured as follows. Section 2 provides an
overview of related work. Section 3 describes a technique for
simulating zooming using elision, and Section 4 discusses the
details of an implementation of that technique. Scenarios of use
are presented in Section 5, and Section 6 concludes.

2 RELATED WORK

Prior work on scrolling text focuses on shrinking the text or
changing the document representation, rather than elision. Speed-
Dependent Automatic Zooming [6] reduces text size in proportion
to scrolling speed, rather than providing an explicit zooming
control, but as with any method that relies on shrinking text, it
suffers from legibility problems. The OrthoZoom Scroller [3] uses
the two degrees of freedom of the mouse to separately control
zooming and scrolling, and relies on the existence of a multi-scale
table of contents to overcome the problem of illegible text.

Previous uses of text elision include source code folding, where
blocks of code are selectively hidden. In the simplest versions, the
user must manually indicate which blocks to hide, as in the
Eclipse IDE [5], resulting in a feature of debatable usefulness.
The JSEclipse plug-in [2] goes one step further by automatically
hiding commented blocks of code, significantly increasing the
usefulness of the code folding feature. Jakobsen and Hornbaek [7]
describe an Eclipse plug-in that presents a fisheye view of source
code, where the main source code view is surrounded by a context
area which displays other lines of code deemed relevant based on
semantic relations extracted from the code. Mylar [8], another
Eclipse plug-in, determines which elements of the source code to
hide by using a recorded history of user actions to determine
which elements are most relevant to the task the user is
performing.

Fluid Documents [4] apply elision to text other than source
code by using interaction to indicate when hidden information
should be shown. Because this hidden information consists of
definitions and explanations that are not part of the core
document, Fluid Documents could be more accurately described
as adding annotations to a document rather than using elision to
reduce its size.

The Adobe Reader [1] attempts to solve the problem of going
back to previously seen parts of a text by providing back and
forward buttons, but the number of views remembered is so large
that the buttons are almost useless. It also suffers from the
“forking” problem common to web browsers, where going back
and then navigating to another location erases the forward history.
The approach could be combined with the zooming described in
this paper by using the locations that were zoomed on as the
views to remember.

3 ELISION BASED TEXT ZOOMING

Rather than shrinking text to the point of illegibility, elision
based text zooming produces a zoomed out representation of a
document by hiding the end of each paragraph. As the level of
zoom is increased or decreased, the amount of each paragraph that
is hidden is increased or decreased respectively, in a way that can
depend on the size of the paragraph. The result is a smooth

* sddavis@cs.ubc.ca

transition from the lowest level view (the document itself without
any zooming) to successively higher level views, with the highest
level being only the headings (if present) or the beginnings of
each paragraph.

This technique facilitates rapid scrolling through a long
document by reducing its length. It also allows one to see an
overview of the document by reducing it to only its headings or
the beginning of each paragraph, and to quickly and smoothly
transition from overview to details or vice versa without getting
lost. When reading a document at the lowest level, these quick
transitions can be used to recover forgotten context. For
documents with little explicit structure (i.e. headings), the
effectiveness of the technique rests on the assumption that people
rely primarily on the beginning of a paragraph to make a quick
determination about its relevance.

Screenshots are shown in Figures 5 through 8.

3.1 Controls

Zooming is controlled using the horizontal axis of the mouse.
When the right mouse button is held down, a zooming widget is
displayed. Moving the mouse to the left increases the zoom
(causes text to be hidden), and moving it to the right reduces the
zoom.

The zooming widget (Figure 1) is displayed on top of the
document, at the location of the mouse when the button was first
clicked. Designed to be easily seen but to have a low visual
footprint, the widget consists mainly of a red, one pixel wide
horizontal line extending about half the width of the screen. At the
right end of the line, a small glyph indicates the zoom direction
and also marks the position at which the zoom is zero (i.e. nothing
is hidden). The red line is intended to draw the eye to the text
underneath without obscuring it.

A small circular thumb which follows the mouse indicates the
current zoom. The thumb is prevented from moving beyond the
right edge of the line, as the widget does not currently support
zooming in beyond 100%, but it is allowed to move as far to the
right as the user desires, as the maximum possible zoom depends
on the document. A probable improvement would be to set the
length of the line to correspond to this maximum possible zoom
and prevent the thumb from exceeding it.

3.2 Elision Increment

The original intent was to hide text a line or lines at a time from
each paragraph. However, as an approximation to this, text was
hidden twenty words at a time and the result was that zooming
was too choppy – it was very difficult to track the text as it moved
because of the large sudden jumps in position when every
paragraph in the document lost a line at the same time. Instead, it
was decided to hide text in groups of six words. The number six
was found by trial and observation to provide a good balance
between smoothness and performance of the implementation.

In theory, the result of ignoring line breaks is a sub-optimal use
of space in that a line that shows one word or five words takes up
as much vertical space as a line that shows twenty. However, it
may be that the empty space is actually more valuable than the
text which could fill it. Combined with the less uniform line
lengths that it produces, the empty space might actually help the
user to remain oriented in the document. It would be interesting to
compare the usability against an implementation which attempts
to pack more text onto the screen by hiding entire lines. This
could be made smoother by hiding lines from only a fraction of
the paragraphs in each zooming step.

3.3 Elision Speed

The speed at which text is elided is determined differently when
zooming in than when zooming out. When zooming in, all
paragraphs are zoomed at the same fixed rate. In contrast, when
zooming out, each paragraph is zoomed at a speed proportional to
its length. For a paragraph of length n (in words), the number of
words to be hidden for a given zooming step is proportional to the
size of the zooming step (determined by the horizontal distance
the mouse was moved) and to a scale factor

f = 0.5 + n / 90.
This value of f was arrived at through experimentation and is not
claimed to be optimal, however it works well in practice.

The motivation behind allowing the paragraph size to affect the
rate at which it zooms was to prevent longer paragraphs from
hiding shorter ones when zooming out. If all paragraphs were
zoomed out at the same speed, the smaller ones would all but
disappear while the larger ones continued to take up significant
screen space, making it difficult to obtain an overview. While the
approach taken here means that larger quantities of text will be
hidden at once, continuity is maintained because the focal point of
the zoom is fixed on the screen, as explained in Section 3.4.

Zooming in at rates proportional to paragraph length was tried
and found to be disorienting because of the sudden appearance of
large amounts of text. Zooming out proportionally and then
zooming in at a fixed rate causes paragraphs of different lengths to
be quickly made about the same length, after which they remain
that way until the zoom is reduced to zero. At that point, the
larger paragraphs suddenly expand to expose their full contents.
To my surprise, this sudden change is not hard to follow, probably
because a significant amount of the text displayed on the screen
when almost fully zoomed in remains roughly in place, and also
because the change happens at a specific point (just as the user
zooms all the way in), rather than happening continuously as it
would with proportional zooming in.

3.4 Centering The Zoom

As a consequence of the fact that paragraph lengths vary (and
not as a result of the method of choosing the speed of elision), the
location of each paragraph as a percentage of the displayed length
of the document changes while zooming. The question of how to
center the zoom therefore needs to be answered, as simply
keeping the view centered over the part of the document
expressed as a percentage of the length results in an
uncontrollable scrolling, often oscillating wildly up and down.

The solution adopted was to fix the position of the document
element at the location initially clicked (i.e. independent of
subsequent vertical motion of the mouse during zooming). The
effect is that text collapses towards the zooming widget when
zooming out and expands away from it when zooming in. As
mentioned above, the zooming widget draws attention to the text
underneath it, and this helps to prevent disorientation by keeping
the user's focus on the focal point of the zoom.

As a refinement, rather than fixing the element on which the
user clicked, the element fixed is the one whose top is vertically
closest to the location initially clicked. This serves two purposes.
Firstly, if the user clicks in the document margin, there will be no
element directly under the mouse, and secondly, if the user clicks
on the end of a paragraph, it is better to fix the beginning of the
next paragraph than the one actually clicked, as it will be closer
to the mouse (and therefore to the zooming widget).1 A further
benefit to this approach is that, if the focal point of the zoom
becomes hidden (as can happen with images, for example), the

1 It does not make sense to fix the end of the paragraph clicked
as this will almost immediately be hidden.

focal point can be shifted to be the element which was next closest
to the location clicked and is still visible. This element will
generally have moved to be very close to the original focal point,
so no sudden jump or discontinuity in the zooming will be
apparent to the user.

The net effect of all this is to give the user control over the
focal point of zooming. The user can easily zoom in on a
particular part of the document simply by pointing the mouse at it
and zooming in. The facilitates a very natural interaction
paradigm where the user first zooms out to a high level overview
of the document, selects a different element (possibly by scrolling
the overview), an zooms in on it, moving smoothly and rapidly
between different sections of the document.

3.5 Indicating Where Elision Occurs

Each partially hidden paragraph displays a glyph to indicate the
location and quantity of hidden text. This glyph is a small
rectangle containing an ellipsis (see Figure 2) and is similar in
appearance to that used by the Eclipse IDE's [5] source code
folding feature to indicate where a block of code has been hidden.
The glyph used here has two important differences, both
motivated by personal experience with Eclipse. Firstly, it is
colored dark red, in contrast to Eclipse's glyph which is light gray.
This significantly increases the visual salience of the glyph,
making it easy to notice where text has been hidden. In Eclipse, it
is easy to miss the less obvious gray ellipsis glyph, although the
problem is mitigated to some extent by the visual structure of
source code. This is because the unit of hiding in source code
folding is a (usually indented) code block, surrounded by braces,
so the absence of the hidden block between the braces is more
apparent at a glance, without any indicator, as compared to text
which lacks the visual structure, and whose unit of elision is based
on words. The second difference is that the ellipsis glyph used in
here also indicates the amount of text which has been hidden from
the paragraph. This is done by making the width of the rectangle
and the number of dots in the ellipsis proportional to the amount
of text which has been hidden. Each dot in the glyph corresponds
to roughly one line of hidden text. This visual encoding should be
readily understood because it uses a familiar symbol (the ellipsis)
with a well-established meaning. It is also compact: an ellipsis
glyph the size of a single 5 character word will represent about 6
to 12 lines of hidden text, depending on the paragraph width. The
glyph thus takes up about 1/120 as much space as the text it
represents, a zoom factor far greater than could be achieved by
simply reducing the font size.

3.6 Details on Demand

To make the zoomed out representation of a document more
informative, details on demand is incorporated in two ways.
Simply clicking on a zoomed out paragraph immediately zooms in
on just that paragraph. Subsequent zoom operations continue to
effect that paragraph, but it remains zoomed in relative to other
paragraphs until the document has been fully zoomed in. This
provides a degree of focus+context by allowing the user to see
some parts of the document in detail while still seeing some of the
surrounding context. Clicking a paragraph also draws a permanent
border around it as shown in Figure 4 (compare with Figure 2), to
allow the user to easily find it again.

The other way in which details on demand is incorporated is via
the ellipsis glyphs. Moving the mouse over an ellipsis glyph pops
up a gold box containing a compact representation of the
complete paragraph, including the hidden text (see Figure 3). This
representation of the paragraph uses a smaller font (hence the
compactness) but otherwise appears the same as the original
paragraph, including paragraph width, formatting, images, etc..

An important feature is that the first word which was hidden (that
is, the word which follows the last visible word in the elided
representation) is highlighted in red and has a dashed, blue border
drawn around it. This coloring immediately draws the eye to the
beginning of the elided text, making it possible to read the elided
representation to the end of the visible text, and then move the
mouse over the ellipsis glyph and seamlessly continue reading the
compact representation from the next word without missing a
beat.

4 IMPLEMENTATION

4.1 Tools Used

The techniques described in this paper were implemented as an
extension to the Firefox web browser using JavaScript and CSS.
The implementation is therefore cross-platform and can be used
by real users on real web pages, without requiring them to use a
specialized tool.

Firefox provides access to the HTML document tree through
the DOM (Document Object Model) interface, which represents
the hierarchical structure of the document as a tree whose root is
the entire document. Each HTML tag corresponds to a node in the
tree, and the plain text between two adjacent tags is represented as
one or more (sibling) text nodes. Typically, what appears as a
paragraph in the rendered page is a node in the DOM, with child
nodes corresponding to the text, formatting, links, and other sub-
structures contained in the paragraph. Most of the implementation
of this project involved performing transformations and searches
on the DOM. Even the visual feedback such as the zooming
widget and the details on demand pop-up was implemented by
inserting nodes into the DOM.

The DOM representation is not ideal for performing advanced
document transformations in that the hierarchy represents both
structure and formatting. The result is that what appears as a
hierarchical structure in the document is not necessarily
hierarchical in the DOM. This turned out to be a more prevalent
phenomenon than I had expected. However, given the time
constraints, I do not believe it would have been feasible to create
my own document representation and renderer. Working around
the limitations of the DOM was not easy but allowed me to take
advantage of the Gecko rendering engine built into Firefox and a
well-established format with a boundless supply of documents for
testing.

In addition to representing the document, the DOM also
provides an interface to the browser itself. This interface was used
to install the event handlers that drive the DOM transformations.

4.2 Preprocessing

When a page is loaded, a substantial amount of preprocessing is
done to prepare the page for zooming. Each node is tagged with
various properties indicating, for example, whether it should be
treated as a paragraph and whether it is allowed to be elided itself.
For instance, headings are never hidden, and this property is
recursive, that is, no child of a heading will be hidden. This is one
of many cases where the hierarchy of the DOM differs from the
hierarchy perceived by the user.2

For simplicity, the initial implementation split strings on spaces
each time operations were to be done at the word level. Not
surprisingly, this proved to be too slow. A preprocessing step was

2 A more natural representation of the document would make
the section identified by a heading be the child of that
heading, but the DOM represents the section denoted by a
heading as a sibling of the heading (or even of an ancestor of
the heading).

added which splits each text node up into multiple text nodes,
each containing (at most) six words. This allows the rest of the
code to deal mostly with nodes in the tree rather than with strings.
In addition, each node is also assigned a count of the number of
words contained in all of its descendants. These word counts are
updated as zooming is performed and are used to decide which
text to hide, and how much.

The final preprocessing step actually replaces the entire
document tree with a duplicate of itself. The original tree is kept
in memory and hereafter is neither structurally modified nor
directly displayed. Each node in the duplicate (displayed) tree has
a pointer back to the corresponding node in the original (not
displayed) tree. When zooming in to show nodes that have been
hidden, these pointers are used to retrieve the hidden nodes from
the original tree (by creating duplicates of the nodes, inserting
them into the duplicate tree, and giving them pointers back to the
original tree). When zooming out, the nodes to be hidden are
simply removed from the document tree. The original tree is also
used to recover properties of nodes have changed due to zooming,
even though the nodes are not themselves hidden. For example, it
is sometimes necessary to compare the current and original word
counts of a node, or to know the original relative position of a
node in the document.

4.3 Technical Limitations

Currently, the elision based text zooming tool works on a
substantial percentage of the web pages tried, but also fails (does
not produce a good zoomed out representation, performs too
slowly, or exhibits bugs) on a substantial percentage. The bugs
and performance problems are simply the result of time pressure
during the implementation phase, the goal of which was primarily
to explore the possible techniques as fully as time permitted,
rather than to produce a commercially viable tool. There are
consequently numerous inefficiencies in the code and deliberately
unsupported browser features (for example, the tool does not
interact perfectly with the Firefox browser's ability to open
multiple pages in different tabs within the same window). I think
that these problems would be straightforward to fix, given time.

The pages for which the tool produces a poor zoomed out
representation appear to be primarily news articles which make
heavy use of HTML's
 tag to delimit paragraphs (in fact, it is
mostly news articles which exhibit performance problems as
well). Problems arise here and in other cases where the DOM
representation diverges from the apparent structure of the
document. In this case, a pair of
 tags insert line breaks to
create a blank line, thus giving the appearance of a paragraph
without creating a node in the HTML document tree to represent
it. It is worth pointing out that this issue is not due to any
fundamental limitation in the zooming technique, it is simply an
artifact of the implementation (one could argue that it is a flaw in
HTML, or the way in which some developers use it). These issues
could be resolved by augmenting the DOM with extra information
that better represents the visual structure of the document. While
the prototype-based nature of Javascript makes this sort of
augmentation relatively easy, a really mature implementation of
the technique would have to give careful individual treatment to a
great many of these special cases.

5 SCENARIOS OF USE

5.1 Scenario 1: Overview

The user is faced with a long web page with no table of
contents and wants to understand the overall structure of it. He
zooms out to produce an overview of the document and is able to
immediately see the headings and sub-headings and their layout

on the page. He then zooms in on an interesting heading and reads
that section of the document.

5.2 Scenario 2: Search

The user is reading a document and remembers that the author
has coined a term to describe something, which he believes is
related to the part he is reading now, but he cannot remember the
exact phrase. Holding down the mouse button to bring up the
zooming widget, he zooms out of the document until only the first
two lines of each paragraph are visible. This results in a much
shorter document and he is able to quickly find a paragraph that
looks relevant. Releasing the button, he moves the mouse to the
interesting paragraph, and then again holds the button down and
moves the mouse to zoom part of the way in on that paragraph,
and realizes that it does not contain the definition he is looking
for. However, he sees that the following paragraph looks very
promising and clicks on it to show it in full. He finds the
definition he is looking for within, and then uses the mouse to
quickly zoom out and scroll back to the place he left off reading.
Subsequently, he wishes to return to the definition and is able to
quickly find it because a box has been drawn around it (as a result
of having been clicked on).

6 CONCLUSION

This paper presented a technique for simulating zooming of text
documents by elision and described its implementation as an
extension to a popular web browser. The technique reduces user
reliance on scrolling by serving as a navigation aid and also by
providing much better support for overview and for
focus+context. Users are able to move smoothly and rapidly from
the lowest level view of a document to a higher level view to
regain lost context when reading or to see an overview of the
document.

Glyphs are used to indicate where text has been elided and
details on demand is used to provide easy access to the hidden
text. A method for adjusting the relative speed of zooming on a
per-paragraph basis was described, as was a method for
maintaining a coherent view during the zooming process.

While a formal user study was not conducted, the response of
those who witnessed a demonstration of the tool was generally
positive and enthusiastic. The technique appears to be useful, but
would benefit from further study and fine tuning.

REFERENCES

[1] Adobe. Adobe Reader.
http://www.adobe.com/products/acrobat/readstep2.html. Dec. 2006.

[2] Adobe Labs. JSEclipse.
http://labs.adobe.com/technologies/jseclipse/. Dec. 2006.

[3] C Appert, J. Fekete. OrthoZoom Scroller: 1D Multi-Scale
Navigation. Proc. SIGCHI 06, pp 21-30. 2006.

[4] B. Chang, J. D. Mackinlay, P. T. Zellweger. Fluidly Revealing
Information in Fluid Documents. AAAI Smart Graphics Spring
Symposium, 2000.

[5] Eclipse Foundation. Eclipse. http://www.eclipse.org/. Dec. 2006.
[6] T. Igarashi, K. Hinckley. Speed-Dependent Automatic Zooming for

Browsing Large Documents. Proc. UIST'00, pp. 139-148. 2000.
[7] M. R. Jakobsen, K. Hornbæk. Evaluating a Fisheye View of Source

Code. CHI, 2006.
[8] M. Kersten, G. C. Murphy. Mylar: a degree-of-interest model for

IDEs. AOSD, 2005.

Figure 3

Figure 4

Figure 1

Figure 2

Figure 5

Figure 6
Figure 7

Figure 8

