
CPSC 533C Project Proposal
Sam Davis

sddavis@cs.ubc.ca

Introduction

Scrolling through large documents composed mostly of text is among the most common actions in
modern computer use, and is perhaps especially important when browsing the web. There are four
major tasks for which it is often used, which I will refer to as reading, overview, understanding, and
search. Reading simply means reading a document from the beginning until some stopping criteria is
met (e.g. the end of the document is reached, the user has determined that the text is not useful to her,
or she has acquired the information she needed). Overview involves quickly getting a sense of the
overall structure or content of the document, usually in more detail than is provided by a table of
contents, by selectively reading small parts of the document. This task usually involves scrolling back
and forth between different sections of the document. Understanding is similar to overview in terms of
the user's actions, but the motivation is different. Understanding involves (re)reading certain parts of
the document, often out of order, so as to better understand the connections between them. Search
involves looking for a particular item in the document, which could be anything from a word or
sentence to a whole section (and which may or may not be present in the document). To some extent,
search is a subtask of overview and understanding. Note that there are not sharp boundaries between
these four tasks: the user will often move fluidly amongst them, and may not make a conscious
distinction between them.

The standard scrollbar is suitable for the reading task, however, it makes the search task so difficult that
users often give up without finding what they are looking for. Furthermore, the difficulty in moving
back and forth between related parts of the document via the scrollbar impedes the overview and
understanding tasks. If scrolling takes too much time or cognitive effort, the user may forget what they
were looking for, or why they were looking for it. The ability to search the text for keywords can be
helpful, but it fails when the user does not know the precise words used in the interesting part of the
document, and when the search yields too many results. Personal experience suggests that many users
tend not to use text search features, perhaps because they are often rather cumbersome.

Dataset

The web provides documents with a range of lengths and with varying amounts of non-text content
(e.g. images, tables), from news stories to academic papers to entire books.

Proposed Infovis Solution

The proposed solution lies at the intersection of navigation, zooming, and focus+context. The user will
control scrolling and zooming independently with the two degrees of freedom of the mouse, similarly to
OrthoZoom. However, instead of shrinking the text so that it is illegible, as done in Speed-Dependent
Automatic Zooming, or relying on the existence of a multi-scale table of contents, text will be
selectively elided, for example by hiding the last or middle N lines of each paragraph, where N will
depend on the level of zoom and the paragraph size. This will allow more rapid scrolling through a long
text, on the theory that people rely primarily on the beginning of a paragraph (and in some cases also
the end) to make quick determinations about whether it is the one they are looking for. The precise

method for determining what text to hide will be refined in the course of the project. In addition, the
question of whether to hide whole sentences or to preserve the physical layout of the text by hiding
lines, will be investigated.

In addition to controlling the overall level of zoom, users will be able to select paragraphs to zoom in
on, so that some paragraphs will be fully visible while others are mostly hidden. This will allow the
user to specify their focus while retaining context by showing a greater portion of the document on the
screen at one time than would usually be possible. This selection will also allow the system to keep
track of which pieces of text the user is interested in, so that they can be visually marked and so that
hiding them can be avoided. A potential extension to the project could use the selection information to
suggest related sections of the document.

The images show a text at three different levels of zoom, starting with no zoom (i.e. no text is elided).
Red ellipsises indicate where text has been elided. Note that the zooming and scrolling widget follows
the mouse cursor, but is only visible while the mouse button is held.

Scenario of Use

The user is reading a document and remembers that the author has coined a term to describe something,
which he believes is related to the part he is reading now, but he cannot remember the exact phrase.
Holding down the mouse button to bring up the zooming and scrolling widget, he zooms out of the
document until only the first two lines of each paragraph are visible. This results in a much shorter
document and he is able to quickly find a paragraph that looks relevant. He moves the mouse to reduce
the zoom so that more of the paragraph becomes visible, and realizes that it does not contain the
definition he is looking for. However, he sees that the following paragraph looks very promising and
clicks on it to show it in full. He finds the definition he is looking for within, and then uses the mouse
to quickly zoom out and scroll back to the place he left off reading. Subsequently, he wishes to return to
the definition and is able quickly find it because it has been visually marked (as a result of having been
clicked on).

Proposed Implementation Approach

I am currently investigating the feasibility of implementing this as an extension to the Firefox web
browser, using JavaScript and possibly XUL. Firefox provides a good mechanism for transforming
html documents on the fly, so it looks promising.

Milestones
1. Determine whether the proposed implementation approach will work.
2. Implement the html transformations allowing text to be incrementally elided and shown again.
3. Implement the user interface side.
4. Determine the most effective way of choosing text to hide.
5. Evaluate the effectiveness on a range of documents

Personal Expertise

I have no specific expertise in this area, but I've always thought that there must be a way to make
scrolling easier. I have programming experience that may be relevant to this project, having worked on
a project which extracted the important elements from an XML DOM and presented the user with a
more easily navigable document tree. I also have some knowledge of JavaScript.

Previous Work

Previous work includes methods which compress text and methods which rely on a previously existing
explicit document structure, such as a table of contents or headings and sub-headings. The first often
result in reduced readability, or no readability, and the second have limited applicability for documents
with few or no headings and without a detailed table of contents. The Adobe Reader attempts to solve
the problem of going back to previously seen parts of a text by providing back and forward buttons, but
the number of views remembered is so large that the buttons are almost useless. It also suffers from the
“forking” problem common to web browsers, that going back and then navigating to another location
erases the forward history. Most closely related to my approach are probably source code editors that
support code folding, where blocks of code are collapsed, but these usually rely on the user to explicitly
indicate which blocks should be collapsed, and they do not gracefully handle user selection of folded
blocks. Recent work attempts to automate the process by identifying the user's focus and showing the
other parts of the code which are deemed to be most closely related.

