Week 6: Networks, Stories, Vis in the Newsroom Tamara Munzner

Department of Computer Science University of British Columbia JRNL 520H, Special Topics in Contemporary Journalism: Data Visualization

Week 6: 18 October 2016 http://www.cs.ubc.ca/~tmm/courses/journ16

• find dataset, visualize it, and write story about it

Assignment 6

- -you've now had practice in • effective visual encoding: space, color • finding the story within a dataset
- wrangling · linking up and partitioning into multiple views
- you're encouraged to consult with us if you get stuck! -is your idea viable/newsworthy?
- -how can you do what you want inside Tableau? -is your visual encoding well justified?
- you're encouraged to post story publicly (but not required)
- -note you can embed vis within web page with Tableau Public

Stories

News

- Assignment 3, 4, 4-solo marks out -Assign 4: 90% pair mark, 10% solo mark for proposal
 - Assign 4 pair: min 74.8, avg 84.2, max 100
- Assign 4 solo: min 50, avg 89.7, max 100 (5% of Assign 6 grade weight) -Assign 3
- min 83.8, avg 93.6, max 100 things to watch out for
- diverging vs sequential colormaps -line charts vs bar charts (continuous vs discrete data) -absolute counts vs relative percentages
- -highlighting/emphasis vs filtering out completely · does your interaction make sense? does it help somebody?

- -please submit packaged workbooks (twbx) not plain workbooks (twb)

Last Time

Networks

Connection vs. adjacency comparison adjacency matrix strengths

-some topology tasks trainable

-predictability, scalability, supports reordering

·• | |/_ |)))

• • • · •

Navigate

- node-link diagram strengths -topology understanding, path tracing
- -intuitive, no training needed
- empirical study -node-link best for small networks
- -matrix best for large networks • if tasks don't involve topological structure!
- [On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis Ghoniem, Fekete, and Castagliola. Information Visualization 4:2

(2005), 114-135,1

- Tue Oct 25 9:30-12:30, 1:30-4:30 in Sing Tao bldg room 313, drop by for help/discussion
- · available by email throughout the week
- two weeks: -project 6 due Tue Nov I 9am

Last Time: Rules of Thumb

· Resolution over immersion

· Responsiveness is required

· Function first, form next

255

→ Align

FIN

No unjustified 3D

- Overview first, zoom and filter, details on demand
- Big Ideas

→

7

Aggregate

→ Embed

Today

stories

• (break)

networks

• vis in the news

beyond this class

· individual meetings on final project

Demos I & 2: Wrangling Tutorial, Simple Survey

-first row for headers (right menu over source in

- -reshaping data: from wide to tall
- joins: inner, left, right, outer -pivots: one observation per row, no cross-tabulation

• Credit: Caitlin Havlak

Wrangling Lessons

- Tableau data interpeter

-manual Excel/GoogleDoc cleaning

- Arrange networks and trees → Node-Link Diagrams
- Adjacency Matrix
- Enclosure
- Idiom: radial node-link tree
- data -tree
- encoding
- -link connection marks -point node marks
- -radial axis orientation
- · angular proximity: siblings
- · distance from center: depth in tree
- -understanding topology, following paths scalability

-IK - IOK nodes

Idiom: force-directed placement

 visual encoding -link connection marks, node point marks

· left free to minimize crossings

- · considerations -spatial position: no meaning directly encoded
 - -proximity semantics? · sometimes meaningful
 - · sometimes arbitrary, artifact of layout algorithm tension with length
 - -long edges more visually salient than short
- -explore topology; locate paths, clusters scalability
- -node/edge density E < 4N
 - http://mbostock.github.com/d3/ex/force.html
- I quant attrib • weighted edge between nodes -2 categ attribs: node list x 2 visual encoding
 - -cell shows presence/absence of edge scalability

Idiom: adjacency matrix view

derived data: table from network

-transform into same data/encoding as heatmap

- IK nodes, IM edges

- at VIS conference in Baltimore, likely extremely slow with email
- next week: -Tamara on travel Sat Oct 22 - Sat Oct 29
- today: office hours 12:30-1:30pm, Tamara & Caitlin
- Schedule

Idiom: treemap

- data
- I quant attrib at leaf nodes
- encoding
- -area containment marks for hierarchical structure
- -rectilinear orientation
- -size encodes quant attrib
- tasks
- -query attribute at leaf nodes
- scalability
- -IM leaf nodes

Link marks: Connection and containment

- marks as links (vs. nodes)
- -common case in network drawing
- -ID case: connection
- ex: all node-link diagrams
- emphasizes topology, path tracing
- networks and trees
- -2D case: containment
- ex: all treemap variants
- emphasizes attribute values at leaves (size coding)
- only trees

Containment Connection

Node-Link Diagram

[Elastic Hierarchies: Combining Treemaps and Node-Link Diagrams. Dong, McGuffin, and Chignell. Proc. InfoVis 2005, p. 57-64.]

Tree drawing idioms comparison

• data shown

- link relationships
- tree depth
- sibling order

design choices

- connection vs containment link marks
- rectilinear vs radial layout
- spatial position channels

considerations

- redundant? arbitrary?
- information density?
- avoid wasting space

[Quantifying the Space-Efficiency of 2D Graphical Representations of Trees. McGuffin and Robert. Information Visualization 9:2 (2010), 115–140.]