Week 6: Rules of Thumb, Networks Discussion: Bringing It All Together

Tamara Munzner

Department of Computer Science

University of British Columbia

JRNL 520M, Special Topics in Contemporary Journalism: Visualization for Journalists

Week 6: 20 October 2015

http://www.cs.ubc.ca/~tmm/courses/journ | 5

Now

- Rules of Thumb, Networks
- Discussion: Vis in the News
 - recent articles

• Break

- Evaluations
 - I'll be outside room
- Lab
 - -Start on final assignment
 - I'll circulate to answer questions about any/all past stuff
 - consolidation, not new material

Structure: Revised plan

- 85% Assignments (6 of them)
 - -Lab 1: 15%
 - -Lab 2: 15%
 - -Lab 3: 10%
 - -Lab 4: 10%
 - -Lab 5: 10%
 - -Lab 6: 25% (two weeks to complete)
- 15% Participation

• The lowest of the first five lab marks will be dropped.

Rules of Thumb

- No unjustified 3D
 - Power of the plane
 - Disparity of depth
 - Occlusion hides information
 - Perspective distortion dangers
 - Tilted text isn't legible
- No unjustified 2D
- Eyes beat memory
- Resolution over immersion
- Overview first, zoom and filter, details on demand
- Responsiveness is required
- Function first, form next

No unjustified 3D: Power of the plane

- high-ranked spatial position channels: **planar** spatial position –not depth!
 - **Magnitude Channels: Ordered Attributes** Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Area (2D size) Depth (3D position)

Steven's Psychophysical Power Law: S= I^N

No unjustified 3D: Danger of depth

- we don't really live in 3D: we see in 2.05D
 - -acquire more info on image plane quickly from eye movements
 - -acquire more info for depth slower, from head/body motion

Thousands of points up/down and left/right

We can only see the outside shell of the world

Occlusion hides information

- occlusion
- interaction complexity

[Distortion Viewing Techniques for 3D Data. Carpendale et al. InfoVis I 996.]

Perspective distortion loses information

- perspective distortion
 - interferes with all size channel encodings
 - power of the plane is lost!

[Visualizing the Results of Multimedia Web Search Engines. Mukherjea, Hirata, and Hara. InfoVis 96]

3D vs 2D bar charts

• 3D bars never a good idea!

Tilted text isn't legible

text legibility

-far worse when tilted from image plane

further reading

[Exploring and Reducing the Effects of Orientation on Text Readability in Volumetric Displays. Grossman et al. CHI 2007]

[Visualizing the World-Wide Web with the Navigational View Builder. Mukherjea and Foley. Computer Networks and ISDN Systems, 1995.]

No unjustified 3D example: Time-series data

• extruded curves: detailed comparisons impossible

[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]

No unjustified 3D example: Transform for new data abstraction

- derived data: cluster hierarchy
- juxtapose multiple views: calendar, superimposed 2D curves

[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]

Justified 3D: shape perception

- benefits outweigh costs when task is shape perception for 3D spatial data
 - interactive navigation supports synthesis across many viewpoints

[Image-Based Streamline Generation and Rendering. Li and Shen. IEEE Trans. Visualization and Computer Graphics (TVCG) 13:3 (2007), 630-640.]

No unjustified 3D

- 3D legitimate for true 3D spatial data
- 3D needs very careful justification for abstract data
 - enthusiasm in 1990s, but now skepticism
 - be especially careful with 3D for point clouds or networks

[WEBPATH-a three dimensional Web history. Frecon and Smith. Proc. InfoVis 1999]

No unjustified 2D

- consider whether network data requires 2D spatial layout
 - -especially if reading text is central to task!
 - -arranging as network means lower information density and harder label lookup compared to text lists
- benefits outweigh costs when topological structure/context important for task
 - be especially careful for search results, document collections, ontologies

- → Network Data
 - → Topology

→ Paths

Eyes beat memory

- principle: external cognition vs. internal memory
 - easy to compare by moving eyes between side-by-side views
 - -harder to compare visible item to memory of what you saw
- implications for animation
 - -great for choreographed storytelling
 - -great for transitions between two states
 - -poor for many states with changes everywhere
 - consider small multiples instead

Eyes beat memory example: Cerebral

- small multiples: one graph instance per experimental condition
 - same spatial layout
 - color differently, by condition

Why not animation?

- disparate frames and regions: comparison difficult
 - -vs contiguous frames
 - -vs small region
 - -vs coherent motion of group

- safe special case
 - -animated transitions

Change blindness

- if attention is directed elsewhere, even drastic changes not noticeable
 - -door experiment
- change blindness demos
 - -mask in between images

Resolution beats immersion

- immersion typically not helpful for abstract data
 - -do not need sense of presence or stereoscopic 3D
- resolution much more important
 - -pixels are the scarcest resource
 - desktop also better for workflow integration
- virtual reality for abstract data very difficult to justify

[Development of an information visualization tool using virtual reality. Kirner and Martins. Proc. Symp. Applied Computing 2000]

Overview first, zoom and filter, details on demand

influential mantra from Shneiderman

[The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. Shneiderman. Proc. IEEE Visual Languages, pp. 336–343, 1996.]

- overview = summary
 - -microcosm of full vis design problem

Responsiveness is required

- three major categories
 - -0.1 seconds: perceptual processing
 - I second: immediate response
 - 10 seconds: brief tasks
- importance of visual feedback

Function first, form next

- start with focus on functionality
 - straightforward to improve aesthetics later on, as refinement
 - if no expertise in-house, find good graphic designer to work with
- dangerous to start with aesthetics
 - usually impossible to add function retroactively

Further reading

- Visualization Analysis and Design. Tamara Munzner. CRC Press, 2014.
 - Chap 6: Rules of Thumb
- Designing with the Mind in Mind: Simple Guide to Understanding User Interface Design Rules. Jeff Johnson. Morgan Kaufmann, 2010.
 - Chap 12:We Have Time Requirements

Arrange networks and trees

Arrange Networks and Trees

Node−Link Diagrams
Connection Marks✓ NETWORKS✓ TREES

→ EnclosureContainment Marks× NETWORKS✓ TREES

ldiom: force-directed placement

- visual encoding
 - link connection marks, node point marks
- considerations
 - spatial position: no meaning directly encoded
 - left free to minimize crossings
 - proximity semantics?
 - sometimes meaningful
 - sometimes arbitrary, artifact of layout algorithm
 - tension with length
 - long edges more visually salient than short
- tasks
 - explore topology; locate paths, clusters
- scalability
 - node/edge density E < 4N</p>

Idiom: sfdp (multi-level force-directed placement)

• data

- original: network
- derived: cluster hierarchy atop it

considerations

- -better algorithm for same encoding technique
 - same: fundamental use of space
 - hierarchy used for algorithm speed/quality but not shown explicitly
 - (more on algorithm vs encoding in afternoon)

scalability

- -nodes, edges: IK-10K
- -hairball problem eventually hits

[Efficient and high quality force-directed graph drawing. Hu.The Mathematica Journal 10:37–71, 2005.]

ldiom: adjacency matrix view

- data: network
 - -transform into same data/encoding as heatmap
- derived data: table from network
 - I quant attrib
 - weighted edge between nodes
 - -2 categ attribs: node list x 2
- visual encoding
 - -cell shows presence/absence of edge
- scalability
 - IK nodes, IM edges

[NodeTrix: a Hybrid Visualization of Social Networks. Henry, Fekete, and McGuffin. IEEE TVCG (Proc. InfoVis) 13(6):1302-1309, 2007.]

[Points of view: Networks. Gehlenborg and Wong. Nature Methods 9:115.]

Connection vs. adjacency comparison

- adjacency matrix strengths
 - predictability, scalability, supports reordering
 - -some topology tasks trainable
- node-link diagram strengths
 - -topology understanding, path tracing
 - intuitive, no training needed
- empirical study
 - node-link best for small networks
 - -matrix best for large networks
 - if tasks don't involve topological structure!

[On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Ghoniem, Fekete, and Castagliola. Information Visualization 4:2 (2005), 114–135.]

http://www.michaelmcguffin.com/courses/vis/patternsInAdjacencyMatrix.png

Idiom: radial node-link tree

- data
 - -tree
- encoding
 - -link connection marks
 - point node marks
 - -radial axis orientation
 - angular proximity: siblings
 - distance from center: depth in tree
- tasks
 - -understanding topology, following paths
- scalability
 - IK IOK nodes

Idiom: treemap

- data
 - -tree
 - I quant attrib at leaf nodes
- encoding
 - -area containment marks for hierarchical structure
 - rectilinear orientation
 - size encodes quant attrib
- tasks
 - -query attribute at leaf nodes
- scalability
 - IM leaf nodes

http://tulip.labri.fr/Documentation/3_7/userHandbook/html/ch06.html

Link marks: Connection and Containment

- marks as links (vs. nodes)
 - -common case in network drawing
 - ID case: connection
 - ex: all node-link diagrams
 - emphasizes topology, path tracing
 - networks and trees
 - -2D case: containment
 - ex: all treemap variants
 - emphasizes attribute values at leaves (size coding)
 - only trees

[Elastic Hierarchies: Combining Treemaps and Node-Link Diagrams. Dong, McGuffin, and Chignell. Proc. InfoVis 2005, p. 57-64.]

Tree drawing idioms comparison

- data shown
 - link relationships
 - -tree depth
 - sibling order
- design choices
 - connection vs containment link marks
 - rectilinear vs radial layout
 - -spatial position channels
- considerations
 - redundant? arbitrary?
 - information density?
 - avoid wasting space

[Quantifying the Space-Efficiency of 2D Graphical Representations of Trees. McGuffin and Robert. Information Visualization 9:2 (2010), 115–140.]

Further reading

- Visualization Analysis and Design. Munzner. AK Peters / CRC Press, Oct 2014.
 - Chap 9: Arrange Networks and Trees
- Treevis.net: A Tree Visualization Reference. Schulz. IEEE Computer Graphics and Applications 31:6 (2011), 11–15. http://www.treevis.net

Further reading

- The Functional Art. Alberto Cairo. Peachpit Press, 2012
 - <u>http://www.thefunctionalart.com/</u>
 - great blog
 - coming soon: The Truthful Art
 - great data journalism visualization resources
- Communicating Data with Tableau. Ben Jones. O'Reilly 2014
 - for more on Tableau
- (also, LAVA Hackathon Oct 24-25)

Discussion

- 156 families
 - -analysis vs presentation
- chicken/coffee maps
- Canadian elections
- what else?

• Break

• Evals

Lab/Assignment 6

- putting it all together
 - find, or create, a newsworthy dataset
 - don't reuse one you used in a past lab
 - create Tableau visualization(s) visualizing it
 - at least one static
 - at least one linked/interactive
 - write up story suitable for public consumption, featuring your vis at its heart
 - upload your viz to Tableau public so that you can embed the interactive material in your story
 - in separate document, write up design rationale and reflections
 - note that you have two weeks
 - due Tue Nov 3 9am