Information Visualization

Tables, LineUp, Bertifier

In Class: Pitches

Tamara Munzner
Department of Computer Science
University of British Columbia

Plan for today
• Pitches
 – 70-80 min pitches (2 min each)
 – up to 2 min Q&A after each
 – (break in the middle)
• remaining time: Reading Q&A
 – Tables
 – LineUp
 – Bertifier

Next week
• to read & discuss (async, before next class)
 – Vad book, Ch 10: Color
 – paper: Array Vie [design study & quant evaluation]
 – paper: Randows Revised [evaluation]

Q&A / Backup Slides

Focus on Tables

Dataset Types

• Items
 – dependent attribute, value of cell
 – mark: points
 – used as unique index to look up items
 – 2 quant attribs
 – grid of positions
 – horiz + vert position

• Keys and values
 – key
 – independent attribute
 – used as unique index to look up items
 – simple tables: 1 key
 – multidimensional tables: multiple keys
 – value
 – dependent attribute, value of cell
 – classify arrangements by keys used
 – 0, 1, 2...

Keys and values

• key
• dependent attribute
• no keys, only values

Scatterplot tasks

• correlation

Scatterplot tasks

• correlation
• clusters/groups, and clusters vs classes

Some keys

Scatterplots: Encoding more channels

• additional channels viable since using point marks
• color
• size (1 quart attribute, used to control 2D area)
• note radius would mislead, take square root since area grows quadratically
• shape

Scatterplot tasks

• express values (magnitudes)
 – quantitative attributes
 – no keys, only values
 – data
 – 2 quant attribs
 – mark points
 – channels
 – horiz = var position
 – tasks
 – find trends, outliers, distribution, correlation, clusters
 – scalability
 – hundreds of items

Keys and values

• key
• independent attribute
• no keys, only values

Idiom: scatterplot

• express values (magnitudes)
 – quantitative attributes
 – no keys, only values

Idiom: scatterplot

• express values (magnitudes)
 – quantitative attributes
 – no keys, only values

Idiom: scatterplot

• express values (magnitudes)
 – quantitative attributes
 – no keys, only values

https://www.cs.ubc.ca/labs/imager/tr/2014/DRVisTasks/

Some keys

https://www.mathsisfun.com/data/scatter-xy-plots.html

http://www.cs.ubc.ca/labs/imager/tr/2014/DRVisTasks/

https://www.d3-graph-gallery.com/graph/bubble_basic.html

https://www.cs.ubc.ca/labs/imager/tr/2014/DRVisTasks/
Idiom: Gantt charts
- one key, two (related) values
 - data
 - 1 categ attrib, 2 quant attribs
 - mark: line
 - length: duration
 - channels
 - horizontal axis: start time
 - task
 - emphasis temporal overlaps & start/end dependencies between tasks
 - scalability
 - dozens of key levels (bars)
 - dozens of value levels
 - numerous items
 - rectilinear axes, aligned vertically
 - task mark: line length!

Idiom: radar plot
- two values
 - data
 - 2 quant value attribs
 - (1 derived attrib: change magnitude)
 - mark: point + line
 - connecting mark between pts
 - channels
 - 3 verticall pos express attrib value
 - (width/height/color)
 - task
 - emphasis changes in rank/value
 - scalability
 - dozens of value levels
 - dozens of items

Idiom: radar plot
- two values
 - data
 - 2 quant value attribs
 - (1 derived attrib: change magnitude)
 - mark: point + line
 - connecting mark between pts
 - channels
 - 3 verticall pos express attrib value
 - (width/height/color)
 - task
 - emphasis changes in rank/value
 - scalability
 - dozens of value levels
 - dozens of items

Idiom: heatmap
- two keys, one value
 - data
 - 2 categ attribs (gen, experimental condition)
 - 1 quant attrib (expression level)
 - marks: point
 - position & size in 3D space
 - indexed by 2 categ attribs
 - channels
 - color by quant attrib
 - (ordered diverging colormap)
 - task
 - find clusters, outliers
 - scalability
 - dozens of key levels (bars)
 - hundreds of value levels
 - dozens of items

Idiom: Slopegraphs
- two values
 - data
 - 2 quant value attribs
 - (1 derived attrib: change magnitude)
 - mark: point + line
 - connecting mark between pts
 - channels
 - 3 verticall pos express attrib value
 - (width/height/color)
 - task
 - emphasis changes in rank/value
 - scalability
 - dozens of value levels
 - dozens of items

Idiom: cluster heatmap
- in addition
 - derived data
 - 2cluster hierarchies
 - dendrogram
 - parent-child relationships in tree with connection line marks
 - leaves aligned so interior branch heights easy to compare
 - heatmap
 - marks (re-)ordered by cluster hierarchy traversal
 - task: assess quality of clusters found by automatic methods

Idiom: Gantt charts
- one key, two (related) values
 - data
 - 1 categ attrib, 2 quant attribs
 - mark: line
 - length: duration
 - channels
 - horizontal axis: start time
 - task
 - emphasis temporal overlaps & start/end dependencies between tasks
 - scalability
 - dozens of key levels (bars)
 - dozens of value levels
 - numerous items
 - rectilinear axes, aligned vertically
 - task mark: line length!

Idiom: radar plot
- two values
 - data
 - 2 quant value attribs
 - (1 derived attrib: change magnitude)
 - mark: point + line
 - connecting mark between pts
 - channels
 - 3 verticall pos express attrib value
 - (width/height/color)
 - task
 - emphasis changes in rank/value
 - scalability
 - dozens of value levels
 - dozens of items

Idiom: cluster heatmap
- in addition
 - derived data
 - 2cluster hierarchies
 - dendrogram
 - parent-child relationships in tree with connection line marks
 - leaves aligned so interior branch heights easy to compare
 - heatmap
 - marks (re-)ordered by cluster hierarchy traversal
 - task: assess quality of clusters found by automatic methods

Idiom: Gantt charts
- one key, two (related) values
 - data
 - 1 categ attrib, 2 quant attribs
 - mark: line
 - length: duration
 - channels
 - horizontal axis: start time
 - task
 - emphasis temporal overlaps & start/end dependencies between tasks
 - scalability
 - dozens of key levels (bars)
 - dozens of value levels
 - numerous items
 - rectilinear axes, aligned vertically
 - task mark: line length!

[Diagram of the Causes of Mortality in the Army in the East]
Pie charts: best practices
- not so bad for two (or fewer) levels, for part-to-whole task
- dubious for several levels if details matter
- terrible for many levels

Axis Orientation
- Rectilinear
- Parallel
- Radial

Idioms: normalized stacked bar chart
- task
 - part-to-whole judgments
 - normalized stacked bar chart
 - stacked bar chart, normalized to full vertical height
 - single stacked bar equivalent to full pie
 - high information density reduces narrow rectangle
- pie chart
 - information density requires large circle

Idioms: glyph maps
- rectilinear good for linear vs nonlinear trends
- radial good for cyclic patterns
 - evaluating periodicity

Idioms: parallel coordinates
- scatterplot limitation
 - visual representation with orthogonal axes
 - can show only two attributes with spatial position channel
- alternate line up axes in parallel to show many attributes with position
 - zoom enabled with line by line segments
 - n is the number of attributes shown
- parallel coordinates
 - parallel axes, jagged line for ties
 - recalculate axes, zoom to point
 - axis ordering a major challenge
 - scalability
 - classes of artifact
 - hundreds of artifacts

Task: Correlation
- scatterplot matrix
 - positive correlation
 - diagonal low-to-high
 - negative correlation
 - diagonal high-to-low
 - uncorrelated spread out
- parallel coordinates
 - positive correlation
 - parallel line segments
 - negative correlation
 - all segments cross at halfway point
 - uncorrelated
 - scattered crossing

Orientation limitations
- rectilinear: scalability wrt attributes
 - 2 axes best, 3 problematic, 4+ impossible
- parallel: unfamiliarity, training time

Parallel coordinates, limitations
- visible patterns only between neighboring axis pairs
- how to pick axis order?
 - usual solution: reasonable axes, interactive exploration
 - some weakness as many other techniques
 - downside of interaction human-powered search
 - some algorithms proposed, none fully solve

Layout density
- Layout Density
- Space-Filling

Idioms: dense software overviews
- data/text
 - tags + 1 quadrant per line
- derived data:
 - one pixel high line
 - length according to original
- color line by artifact
- scalability
 - 10K+ lines

Arrange tables
- Express Values
 - Separate, Order, Align Regions
 - Separate
 - Order
 - Align
 - Layout Density

https://bl.ocks.org/mbostock/3886394