Information Visualization Reduce: Aggregation & Filtering Project Peer Reviews Tamara Munzner Department of Computer Science

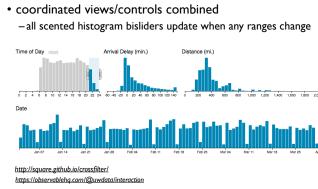
University of British Columbia

Week II, 17 Nov 2021 https://www.cs.ubc.ca/~tmm/courses/547-21

Q&A / Backup Slides

Reducing Items and Attributes

→ Attributes


→ Filter reduce/increase: inverses → Items • filter **→**

-pro: straightforward and intuitive • to understand and compute -con: out of sight, out of mind

Reduce items and attributes

Idiom: cross filtering System: Crossfilter · item filtering

-all scented histogram bisliders update when any ranges change

Today

break

first: project peer reviews

-join your matched teams

• you've already read other team's written update

-record discussion/thoughts in gdoc (freeform)

Visualization Analysis & Design

Reduce: Aggregation & Filtering (Ch 13)

Reducing Items and Attributes

A

→ Filter

→ Items

Aggregate

→ Items

→ Attributes

→ Attributes

-first A critiques B; then B critiques A

Q&A overflow from before

• Q&A / mini-lecture this time

- Ch II, Interact, cont

-Ch 12, Multiple Views

-Ch 13, Reduce

Tamara Munzner

@tamaramunzner

aggregation

• filter

Department of Computer Science University of British Columbia

Reduce items and attributes

- pro: straightforward and intuitive

• to understand and compute

-con: out of sight, out of mind

-pro: inform about whole set

not mutually exclusive

- combine filter, aggregate

- combine reduce, change, facet

- con: difficult to avoid losing signal

• reduce/increase: inverses

- let me know by private Piazza post if your counterpart(s) weren't prepared

· a group of elements is represented by a smaller number of derived elements

Aggregate → Items → Attributes

Idiom: histogram · static item aggregation

• task: find distribution data: table derived data

- new table: keys are bins, values are counts bin size crucial

- pattern can change dramatically depending on discretization

- opportunity for interaction: control bin size on the fly

-ask clarifying questions

Peer reviews

• rough structure (adapt as you like, aim for ~45-60 min)

- discuss tradeoffs, design choices, suggestions

-get demo to see look/feel & any interaction

-talk through initial thoughts when read updates

-when conversation winds down, critiquers record braindump (if not done as you go)

-write DONE at top of your gdoc section & switch! tips on giving feedback

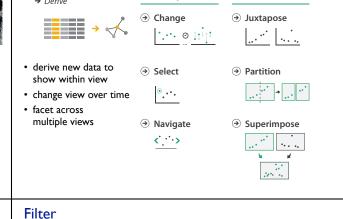
- state what you think is good about the work, and why you think so - state what you think needs improvement, including why/rationale

Manipulate

- offer specific suggestions on how to improve it, as followup

-keep your feedback focused on the work, not the person who did it

How to handle complexity: 3 previous strategies How to handle complexity: 3 previous strategies + 1 more


Reducing Items and Attributes

→ Filter

→ Attributes

Facet

· eliminate some elements

- either items or attributes

according to what? -any possible function that partitions

dataset into two sets • attribute values bigger/smaller than x noise/signal

 filters vs queries -query: start with nothing, add in elements

- filters: start with everything, remove elements

-best approach depends on dataset size

Idiom: FilmFinder

Upcoming

next week (W12)

• Ch 14: Embed - Focus+Context

[type: design study]

last week of classes (WI3)

- in class: evals

derive new data to

change view over time

reduce items/attributes

within single view

show within view

facet across

multiple views

-async: no readings/discussion

-in class: Q&A wrapup (W12)

-async: last week of readings / discussion (light, 2 readings)

IEEE TVCG (Proc.VAST 2017) 24(1):1-12, 2018.

• oral feedback on project progress, after I've read them

- in class: post-update meetings with Tamara

• paper: Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow.

-in class: lecture on research process and final writeup expectations

Manipulate

... 0 11

→ Change

→ Select

Navigate

Kanit Wongsuphasawat, Daniel Smilkov, James Wexler, Jimbo Wilson, Dandelion Mané, Doug Fritz, Dilip Krishnan, Fernanda B. Viégas, and Martin Wattenberg,

Facet

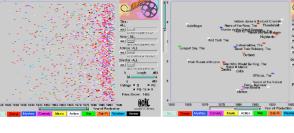
Juxtapose

Partition

Superimpose

Reduce

Aggregate


Embed

النائليا

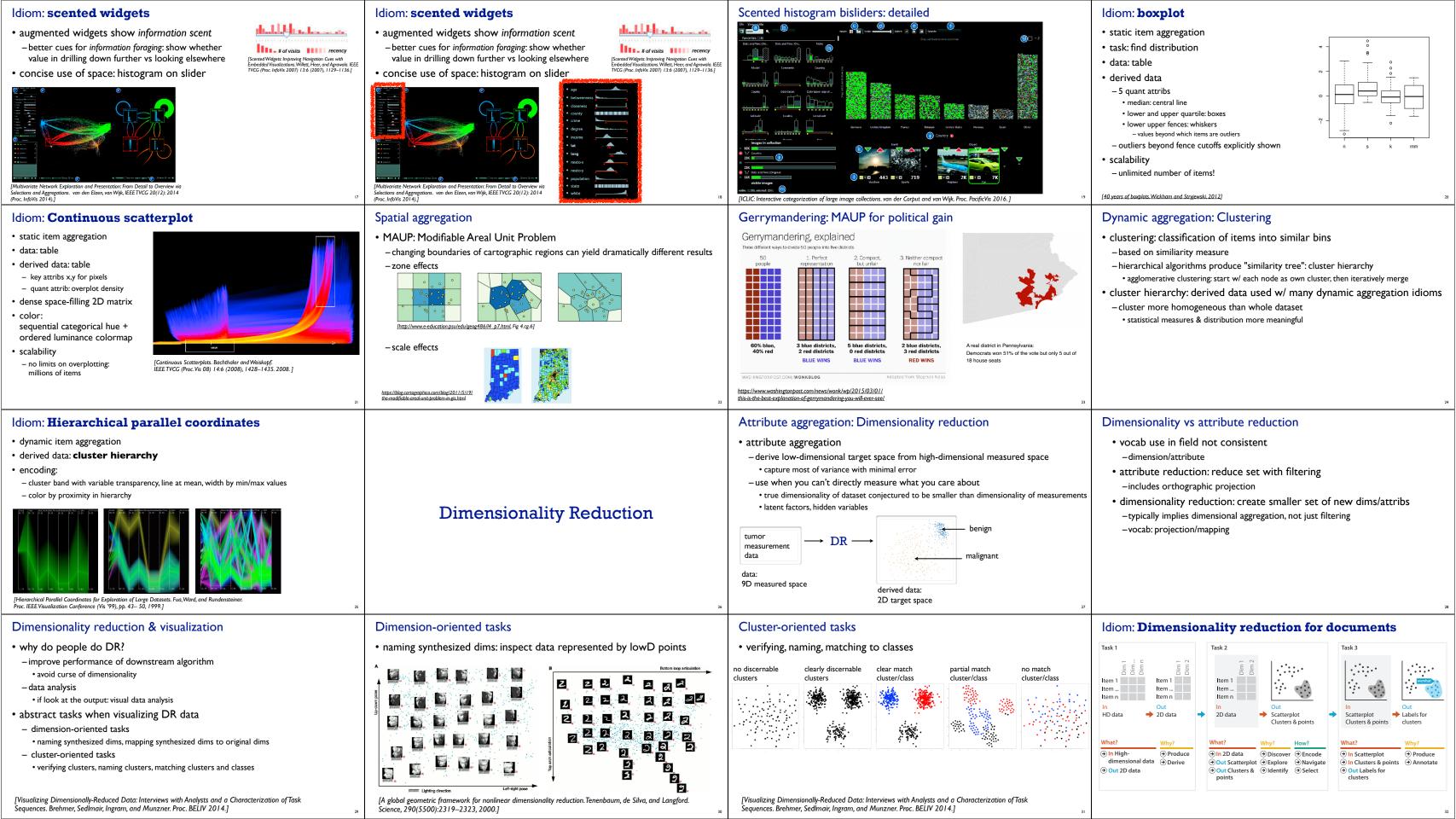
Filter

· dynamic queries/filters for items -tightly coupled interaction and visual encoding idioms, so user can immediately see

results of action

Idiom: scented widgets

· augmented widgets show information scent


[Ahlberg & Shneiderman, Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays. CHI 1994.]

-better cues for information foraging: show whether value in drilling down further vs looking elsewhere

· concise use of space: histogram on slider

<u>draftlylocitecture</u> [Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Willett, Heer, and Agrawala. IEEE TVCG (Proc. InfoVis 2007) 13:6 (2007), 1129–1136.]

of visits | | | | recency

Latest algorithms: t-SNE, UMAP

- https://distill.pub/2016/misread-tsne/
- https://pair-code.github.io/understanding-umap/

Understanding UMAP

Pulsa Fer Custe 50
Dimensions 2

Interacting with dimensionally reduced data

[https://uclab.fh-potsdam.de/projects/probing-projections/]

[Probing Projections: Interaction Techniques for Interpreting Arrangements and Errors of Dimensionality Reductions. Stahnke, Dörk, Müller, and Thom. IEEE TVCG (Proc. InfoVis 2015) 22(1):629-38 2016.]

VDA with DR example: nonlinear vs linear

- DR for computer graphics reflectance model
- -goal: simulate how light bounces off materials to make realistic pictures • computer graphics: BRDF (reflectance)
- -idea: measure what light does with real materials

[Fig 2. Matusik, Pfister, Brand, and McMillan. A Data-Driven Reflectance Model. SIGGRAPH 2003]

Capturing & using material reflectance

- reflectance measurement: interaction of light with real materials (spheres)
- · result: 104 high-res images of material -each image 4M pixels
- goal: image synthesis - simulate completely new materials
- need for more concise model - I04 materials * 4M pixels = 400M dims
- -want concise model with meaningful knobs
- how shiny/greasy/metallic
- DR to the rescue!

Linear DR

• first try: PCA (linear)

[Figs 6/7. Matusik et al. A Data-Driven

Reflectance Model, SIGGRAPH 20031

- result: error falls off sharply after ~45 dimensions
- -scree plots: error vs number of dimensions in lowD

[http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png]

- problem: physically impossible intermediate points when simulating new materials
- -specular highlights cannot have holes!

Linear dimensionality reduction

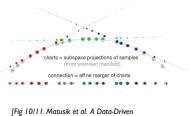
principal components analysis (PCA)

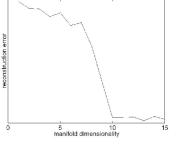
· mapping synthesized dims to original dims

- finding axes: first with most variance, second with next most, ...

- describe location of each point as linear combination of weights for each axis

0 29 40 60 80 100

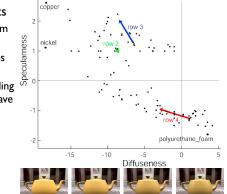

Nonlinear dimensionality reduction


- pro: can handle curved rather than linear structure
- cons: lose all ties to original dims/attribs
 - new dimensions often cannot be easily related to originals
 - mapping synthesized dims to original dims task is difficult
 - many techniques proposed
 - many literatures: visualization, machine learning, optimization, psychology, ...
 - -techniques: t-SNE, MDS (multidimensional scaling), charting, isomap, LLE,...
 - -t-SNE: excellent for clusters
 - but some trickiness remains: http://distill.pub/2016/misread-tsne/
 - -MDS: confusingly, entire family of techniques, both linear and nonlinear
 - minimize stress or strain metrics
 - early formulations equivalent to PCA

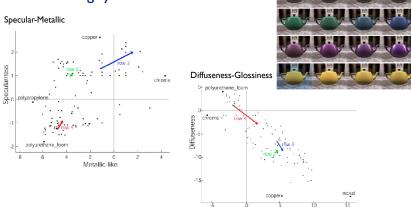
Nonlinear DR

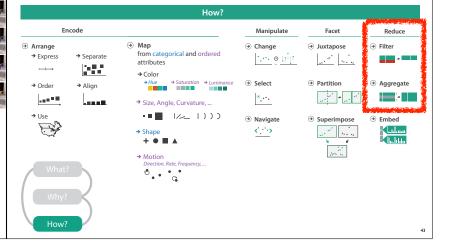
- second try: charting (nonlinear DR technique)
- scree plot suggests 10-15 dims
- -note: dim estimate depends on

technique used!



Charted manifolds of BRDF data


Reflectance Model. SIGGRAPH 20031


Finding semantics for synthetic dimensions

- look for meaning in scatterplots
- -synthetic dims created by algorithm but named by human analysts
- points represent real-world images (spheres)
- people inspect images corresponding to points to decide if axis could have meaningful name
- cross-check meaning
- -arrows show simulated images (teapots) made from model
- -check if those match dimension semantics

Understanding synthetic dimensions

