
VisCPs: Visualizing the Execution of Command Patterns

Zainab Saeed Wattoo

Fig. 1. VisCPs: displays the command patterns of different organic chemistry experiments carried out at a self-driving laboratory (Hein
Lab at University of British Columbia).

Abstract— Self-driving laboratories are transforming the way experiments are performed in labs. They integrate automated robotic
platforms, cyber-physical systems (CPS) and artificial intelligence (AI) to perform automated experiments, make autonomous discoveries
and carry out mundane tasks performed by the researchers. However, these robotic platforms and CPS used as a setup in self-driving
laboratories are vulnerable to attacks over the Internet. To protect this particular setup, we are working towards building an Intrusion
Detection System (IDS) for a self-driving laboratory in chemical sciences domain - Hein Lab at University of British Columbia (UBC).
Designing an effective IDS requires some understanding about the different experiments being performed and data analysis to
understand the patterns of the commands sent by the cyber-physical systems used in the labs. To bridge this gap, we present a
visualization web application - VisCPs that displays the execution of command patterns of the experiments performed at Hein Lab. This
application helps in comparing different experiments and visualizing the signatures of each experiment being performed in the lab. To
evaluate our web application, we took a survey from three users from diverse backgrounds who ran our web application. Our results
show that the web application helped them in finding a pattern in the performed experiments. Moreover, the responses demonstrate
that the application is easy to use and interactive with a limitation of a feature related to usability of the web application.

Index Terms—Self-driving laboratories, cyber-physical systems, intrusion detection system, visualizing command patterns.

1 INTRODUCTION

Self-driving laboratories [2, 3] are emerging over time that use robotic
platforms, computer vision and artificial intelligence to perform auto-
mated operations and work towards autonomous discoveries. Moreover,
they are used to automate the routine tasks and automate the tasks
where manual labor is involved. We specifically collaborate with a
self-driving laboratory - Hein Lab [2] at University of British Columbia
(UBC) for this project. Figure 2 shows automated solubility experiment
setup at Hein Lab where a lab computer running python scripts sends
commands to the Robot Arm (N9) and other cyber-physical system
(CPS) modules such as Arduino Augmented Quantos (Solid Dosing),
Tecan Cavro (Liquid Dosing) and IKA Magnetic Stirrer (Stirring and
Heating) connected to it to carry out different automated experiments.

Unfortunately, the automated robotic platforms and the CPS setup

• Zainab Saeed Wattoo is M.Sc. Computer Science student at University of
British Columbia. E-mail: zswattoo@cs.ubc.ca.

in self-driving laboratories are at risk from an intruder or a hacker that
could intercept the network communication. For example, in the Hein
Lab CPS setup the hacker who has gained control over the lab computer
can manipulate the python scripts and send malicious commands that
change the behavior of the robot arm or the CPS modules; leaving
them in an unwanted state or manipulating them to perform danger-
ous experiments. To defend these laboratories from various attacks,
we are in the progress of developing an Intrusion Detection Systems
(IDS) specifically for Hein Lab so that safe experiments are performed
correctly and accurately. As the initial stage towards building an IDS,
we have deployed a middlebox that sits between the lab computer and
the robot arm along with the CPS modules. This middlebox is a com-
puter that does not need to be connected to the internet connection,
shown in Figure 3 is connected to the lab computer via Ethernet and
connected to the robot arm along with the other CPS modules using
different communication channels. The middlebox collects the traces
of the experiments that are being done in the lab and also forwards the
commands to the robot arm and the other CPS modules.

To design an effectual IDS on the middlebox, we need to analyze the



Fig. 2. Hein lab setup for Automated Solubility experiment. A lab computer running python scripts is sending commands to the robot arm and its
assisting CPS modules

Fig. 3. Middlebox will be running Anomaly Based Intrusion Detection System which is connected to the robot arm and its assisting CPS modules.
Further, it is connected to the lab computer via Ethernet.

command data sent from the lab computer to draw comparisons between
the different automated chemical experiments performed at Hein Lab.
Further, at a lower granularity, we need to recognize the different
command patterns of the commands that are sent via different cyber-
physical systems (CPS) deployed in the lab while performing a specific
experiment. To address this challenge of data analysis, this paper
presents VisCPs, a web application that displays the execution of the
command patterns over time for different automated experiments. The
main goal of this application is to help in understanding the similarities
and differences between different experiments. To achieve this goal,
Figure 1 displays the overall view where all traces in the form of a
step graph of the experiments are shown together. Another goal of
this application is to present the signature of each experiment to give
an understanding of how the command patterns change over time for
a particular experiment. Towards this end, the user selects a specific
experiment that they want to visualize and the VisCPs plots the step
graph along with the information regarding that experiment. Further,
the user can also zoom, pan, auto-scale and download the plot.

For our evaluation, we asked three users from different education
backgrounds to run our application and perform different tasks. Later,
they filled a survey that has some questions regarding the interpretabil-
ity, usability and interactivity of the application. All three of them were
able to recognize a pattern from the overall view of the experiments. In
addition, most of them found it easy to use and an interactive applica-

tion. However, all of them found a feature related to usability of the
web application of going back to the main page as a challenge.

The remainder of the paper is organized as follows. Section 2
discusses the related work in the domain of visualization that was
helpful in building an IDS and visualizing patterns. Section 3 describes
the data and task abstractions. Section 4 presents our solution - VisCPs
followed by the implementation details of VisCPs in Section 5. Section
6 presents the results of the survey conducted to evaluate the application.
Section 7 and 8 concludes our work with describing the limitations,
future work and a conclusion.

2 RELATED WORK

We review the work where visualizations have helped to build an In-
trusion Detection System and Intrusion Detection System based Tools.
Further, we explore the work that has been done to visualize different
patterns in different areas of research.

2.1 Intrusion Detection Systems and Tools
Several works [5, 6] have been done to create Intrusion Detection
System with Visualizing Capabilities. Luo et al. [6] proposed a four-
angle-star based visualized feature generation approach (FASVFG) to
evaluate the distance between samples in a 5-class classification prob-
lem that is used for building an IDS. The four-angle-star approach is
used to classify an unknown point to a class where the four vertexes



Field Name Description Data Type Cardinality
Timestamp Time of the command Ordered 12th October 2021 - 22nd October 2021
Module Name of the Module Categorical 5
Command Name Name of the command Categorical 45
Arguments Arguments executed with the command Categorical 5747
Responses Responses received once the command executed Categorical 0
Exceptions Exceptions got once the command executed Categorical 0

Table 1. Dataset Abstraction

represent four anomaly classes and from which new features are gener-
ated. It is a feature reduction approach that is used before the data is
fed into the classification model. Moreover, Karami [5] worked on a
novel anomaly-based IDS where visualization capabilities uses mod-
ified Self-Organizing Map (SOM) in the presence of benign outliers.
Self-Organizing Map - an unsupervised learning algorithm is used to
convert high dimensional data to low-dimensional data that is similar to
a 2D discrete map with nodes and connections. It detects the attack and
anomalies correctly and also provides useful insights to the end users.

LogicMonitor [1] is an Intrusion Detection Based tool that uses
advanced machine learning algorithms to visualize the expected data
patterns for data points, so one could see the data that falls outside of
these patterns. The LogicMonitor provides dashboards and widgets to
display the data the way users wants in order to catch the issues before
hand in order to avoid further more severe events.

Their approaches [1,5,6] visualized and analyzed the network traffic
data and helped with feature reduction of the dataset or building an
IDS using visualization capabilities. However, our data consists of the
command traces being used for carrying out the chemical experiments.
The main goal is to visualize the command patterns for data analysis
which is the stage before building an IDS.

2.2 Visualizing Patterns
People have worked on visualizing different patterns in different re-
search areas to help them get an understanding of the data. Towards
this end, BubbleNet [7] is a first complete visualization design study
for cyber security where a dashboard is created to help the network
analysts understand the patterns within the data. This work is used as
a design study and uses network security dataset. Whereas, our work
uses the commands data of the cyber-physical systems not the network
packets that are used for the communication.

Further, Singh [8] analyzes and visualizes system calls that captures
useful information of system call logs to detect malicious activity from
benign activity. They find patterns by visualizing their data via scatter
plot and line chart. Cadez et al. [4] proposes a new methodology for
observing the patterns of navigating through Web Sites. They divide
the users with similar navigation paths into one cluster. They create a
tool called WebCANVAS (Web Clustering Analysis and VisuAlization
of Sequences) for visualizing clusters of users with same behavioral
pattern.

Both works [4, 8] are used to visualize the patterns in their own
domain such as observing system calls or user behavior on Web Site.
However, our work is concerned with visualizing the commands pat-
terns in the cyber-physical systems security domain.

3 DATA AND TASK ABSTRACTION

The following section describes the data and task abstraction.

3.1 Data Description
In the Hein Lab, the traces are collected by our middlebox for every
experiment that runs on the lab computer. These traces are collected
from five different CPS modules: (i) C9 Controller controls the Robot
Arm N9 and a Centrifuge. (ii) Robot Arm UR3e. (iii) Arduino Aug-
mented Quantos is used for dosing the solid in vials. (iv) Tecan Cavro
is a pump that is used for dosing the liquid in vials. (v) Magnetic Stirrer
is used for stirring and heating the solution in vials. Once these traces
are collected, they are processed and stored in the form of a json file,
csv file and further stored in MongoDB. For building our solution, we

use only the supervised experiment csv files that are in table format
to visualize the data. A supervised experiment is the one where the
name of the experiment was known when the trace was collected for
that particular experiment.

The current dataset contains normal and anomalous traces with a
size of 2.32 MB with 25 csv files. Within these 25 csv files, there are
6 attributes (fields) and 30126 items (commands) in total that have
been executed. The data description is shown in Table 2. These 25 csv
files were supervised with a total of four experiments : (i) Automated
Solubility with N9. (ii) Automated Solubility with N9 and UR3e. (iii)
Crystal Solubility. (iv) Joystick Movements. The number of csv files
for each procedure runs is shown in Table 3. From these csv files, we
label three of them as anomalous as they resulted in a crash of a robot
arm with another device. The rest of the 22 csv files were labeled as
benign as the experiment ran successfully or it was stopped midway by
a lab researcher for example if they did not use the correct gripper for
the robot arm to pick up a vial.

Data Type Table
Data Size 2.32 MB
Total Number of CSV files 25
Total Number of Fields 6
Total Number of Commands 30126

Table 2. Dataset description

Procedure Name No. of csv files
Automated Solubility with N9 5
Automated Solubility with N9 and UR3e 4
Crystal Solubility 4
Joystick Movements 12

Table 3. Number of csv files per experiment

Each csv file known as a trace for an experiment contains the times-
tamp, commands and arguments sent to the robot arms and the as-
sisting CPS modules and contains the responses and exceptions that
are received while the experiment is running. Table 1 shows the data
abstraction of the tracing dataset containing the description, data type
and the cardinality. There are 6 attributes: Timestamp, Module, Com-
mand Name, Arguments, Responses and Exceptions from which we
will use the first four attributes (Timestamp, Module, Command Name,
Arguments) for the filtered dataset. The ordered Timestamp contains
the timestamp when the command was executed, the categorical Mod-
ule contains the name of the module, the categorical Command Name
contains the name of the command that was executed, the categorical
Arguments, categorical Responses and categorical Exceptions field
contains the arguments, responses, exceptions of the command that was
executed.

3.2 Task Description

For designing an effective IDS, the command data produced by the
middlebox traces needs to be used for understanding the similarities
and differences between different automated experiments. From these
experiments, a specific experiment needs to be selected to understand
its signature in detail along with the description containing the name of



Fig. 4. Main page of VisCPs displays all the subplots of the experiments and also includes a drop down box at the top of the page to select a
particular experiment.

the experiment, the type of experiment (anomaly/benign) and the de-
scription on how that particular experiment was performed. Further, the
command patterns needs to be also presented for a particular timestamp
and arguments for a particular command as well.

In the abstract language, we are creating a web application that helps
to analyze and search within the tables presented by the csv files. For
analyzing, we want to consume the data to present the overall view of
all the different experiments showing the similarities and differences
within them and also present the trace of each experiment along with its
information using subplots and plots respectively. The web application
uses two types of search : one where location is known - ”Lookup” and
one where the location is unknown - ”Explore”. The user can lookup
from the drop down menu, the specific experiment that they want to
visualize. Further, using the hover, zoom, pan and auto-scale they can
explore the plots for a particular timestamp that they want to visualize
the commands pattern for and also see the arguments of a particular
command.

4 VISCPS

VisCPs, our proposed web application, presents the execution of the
command patterns over time. According to the user tasks and require-
ments, our application caters to the following : (1) Provides a holistic
overall view where the command patterns of different experiments
are at the main page. (2) Presents the trace of a specific experiment
that is selected by the user from the drop down menu on a different
page. In the following sections we describe the idioms used and the
design choices considered to create the web application. Moreover, we
present the what-why-how framework and a use case scenario of the
application.

4.1 Experiments Overall View
The main page presents time-varying step graphs as subplots of all
experiments using the command names from the dataset. On these
step graphs, the x-axis is the time step and the y-axis is the command

name. We decided to use step graph as the idiom for this particular
dataset because the command names are categorical and they help
in demonstrating the length of time it takes for each command to be
executed. Other graphs such as scatter plots are unsuitable as they do
not accurately display the amount of time it takes for a command to be
executed. Further, a line graph could be another alternative but it adds
noise to the data as the attribute chosen for the y-axis is categorical not
quantitative, making it also unsuitable for this scenario.

There are 45 total commands on y-axis that are consistent for all the
subplots, helping in understanding the different signatures of different
experiments. These commands are ordered according to their order in
the experiments that are conducted. For example, the solid dosing in
vials using Arduino Augmented Quantos (Quantos) is done before the
liquid dosing in vials using Tecan Cavro (Tecan), placing the Quantos
commands at the top compared to the Tecan commands at the bottom
on the y-axis. The robot arms (C9 and UR3e) commands are placed
in the middle of the y-axis command order as they are either the most
frequent commands or can be used in any order at any time during the
experiment.

The overall view including the drop down to select a particular
experiment on the main page is shown in Figure 4. We used lines as the
mark of the step graph to encode the command used at a particular time.
One of the channel used was the length of the lines of the step graph
that were used to encode the amount of time it takes for a particular
command to be executed. Another channel was the same color used
throughout the experiment encodes the whole command pattern of the
experiment.

4.2 Individual Signature View
The individual signature view is displayed on another page when the
user selects a specific experiment from the drop down menu as shown
in Figure 6. This drop down menu is used to reduce the dataset and
uses only the dataset for the one required for the experiment selected.
This individual view displays a step graph that is the zoomed in version



Fig. 5. Individual signature of Experiment 5.

Fig. 6. Drop down menu in VisCPs to select the experiment.

Fig. 7. Toolkit shows up at the top of the graph that helps to zoom, pan,
auto-scale and download.

of the subplot on the main page. This step graph also has time step on
the x-axis and command names on the y-axis.

Data pre-processing allowed to filter out the commands that do not
appear in the experiment and displays only the commands that do
appear on the y-axis. Further, the y-axis command name labels are
processed in a way that it displays command names along with its
module name as well.

Similar to the subplots, the line is used as a mark to encode the
commands at a specific time and the length of the line is used as a
channel to encode the amount of time it takes for individual command
to be successfully completed. All commands used the same color
channel to encode the command pattern of an experiment. Figure 5
shows the individual view of Experiment 5. When the user hovers over
the lines of the step graph that represent the command, we can see the
time step, the command name, the module name and the arguments
associated with that command name as shown in Figure 8.

Further, the step graph of the experiment has a title that displays

Fig. 8. Pop up appears when one hovers over a particular command at a
particular time step.

Fig. 9. Cross button inside the experiment drop down menu switches to
the overall view.

the name of the experiment, the type of signature (benign/ anomaly)
and the description of the experiment that the signature is for. The
options on the top right hand side of the graph displays a toolkit along
with the pop up displaying its purpose. This toolkit allows multiple
functionalities such as it allows the user to zoom in to the step graph,
zoom out of the step graph, zoom at a particular time step, pan the trace
so that the user to drag along the trace to observe the zoomed in version
for all time steps, auto-scale to original view of the graph and download
the plot. This toolkit is shown in Figure 7. To go back to the main page
that displays the overall view, the user needs to select the cross button
inside the drop down menu box as shown in Figure 9.

4.3 What-Why-How Framework

Table 4 shows the what-why-how framework that is used to analyze the
web application.



What: Data Table data; items and attributes; ordinal
and categorical

Why: Tasks Understanding comparisons between dif-
ferent experiments; Understanding indi-
vidual signature of a particular experiment

How: Encode Step graph; Line encodes the command
at a particular time; Length of the line
encodes the time it took for a particular
command to be executed

How: Manipulate Zoom; Pan; Auto-scale
How: Reduce Filter according to a specific experiment

Table 4. what-Why-How Framework

4.4 Use Case Scenario

The researcher at the Systems and Security Lab at University of British
Columbia runs the web application in their web browser. The web
application displays the overall view on the main page where all the
experiments are displayed. The researcher is able to determine a specific
pattern such as from experiment 10 to experiment 21 have a similar
pattern indicating that it was a joystick movement experiment. Further,
they want to visualize experiment 3 as the pattern for most of the time
steps looks similar to joystick movement experiments. From the drop
down menu, they select Experiment 3 which takes them to another
page displaying the zoomed in version of Experiment 3. They get the
information and the description related to the experiment. Later, they
observe that the time step from 1 to 100 looks different from the rest of
the command pattern. To observe it closely, they select the zoom button
from the toolkit and drag from time step 1 to 100 which displays the
zoomed in version for that particular time step. To view the rest of the
trace, they select the pan button from the tool kit to drag along the rest
of the trace. In order to move back to the original view of the trace, they
select the auto-scale button from the toolkit. Moreover, they hover over
the commands to get an idea of the arguments used with the commands.
The researcher also wants to download the plot to better understand it
later offline. For that purpose, they select the camera button from the
tool kit to download the plot. Lastly, in order to go back to the main
page, they select the cross-button from the drop down menu box that
takes them back to the overall view.

5 IMPLEMENTATION

In this section, we will discuss the implementation details used for
reading the data, processing it and for visualizing it using the web
application. Later, it lists down the time it took to implement different
tasks.

5.1 Data Reading and Processing

We used Python as the programming language that was used to read the
supervised csv files. Python was also used for filtering the commands
that are not part of a particular experiment for the individual signature
view. Further, it was also used to change the y-axis labels where the
module name was embedded with the command names.

5.2 Visualizing

Our solution was implemented in Python and uses Plotly Express and
Dash libraries. The plotly library was used to create the step graphs
for subplots and the plots for individual experiments. It comes with
the zoom, pan, auto-scale and download feature. Plotly also allows to
integrate the hover feature to display the modules and arguments of
the commands. The dash library is used to create the web application
that integrates the html components. It gives the functionality to add
the drop-down menu along with moving from one page to another
making it interactive. Before choosing these libraries, we worked with
matplotlib and plotly go library that had their own limitations and flask
library that did not seem compatible with some functionalities of plotly
express. Fig. 10. Survey used for evaluating the web application.



Fig. 11. Results of survey filled by three users. (a) The pie chart shows 100% response of the users finding experiment pattern. (b) The pie chart
shows 100% response of the users finding the zoom feature in the web application. (c) The pie chart shows 66.7% response of the users finding the
download feature in the web application. (d) The pie chart shows 100% response of the users finding the hover feature in the web application. (e)
The pie chart shows 100% response of the users not finding the feature of going back to the main page feature. (f) The bar chart shows 66.7%
response of the users found it easy to use. (g) The bar chart shows a positive response of above 5 for finding the web application interactive to use.
(h) The bar chart shows a positive response of above 5 for finding the web application responsive.



5.3 Milestones
This section lists down the tasks that were performed along with the
number of hours it took to achieve those tasks.

Tasks No. of Hours
Pitch 3
Project Proposal 10
Data Collection and Finalization 12
Deciding on visualization tool 3
Project Update 4
Initial Implementation and learning tools 8
Implementing overall view 8
Implementing individual view 16
Finalizing Code and Artifact 3
Teaser Image 1
Final Report 20
Total No. of Hours 80

Table 5. Milestones

6 RESULTS

For our evaluation, we created a survey that lists some questions regard-
ing the interpretability, interactivity and usability as shown in Figure
10. Some of the questions included : if the users were able to find any
specific pattern in the overall view on the main page, how interactive
did they find the application on a scale from 0 to 10 or how easy to
use did they find the application on a scale from 0 to 10. Three users
were asked to run VisCPs, our web application and fill the survey after
performing tasks on the application. The users were from diverse edu-
cation backgrounds : (1) Sauder Business School at UBC. (2) Electrical
and Computer Engineering Department at UBC. (3) Computer Science
Department at UBC.

The results are illustrated in Figure 11. Overall, the response was
positive and encouraging. All of them were able to find a specific
pattern as shown in Figure 11(a). Most of them were able to find the
features over the web application as shown in Figure 11(b), Figure
11(c), Figure 11(d). The users mostly found the application easy to use,
interactive and responsive as shown in Figure 11(f), Figure 11(g) and
Figure (h). However, there was one limitation that the users were not
able to go back to the main page and found it a challenge to spot the
cross button inside the drop down menu as shown in Figure 11(e).

7 DISCUSSION AND FUTURE WORK

VisCPs is a problem-driven approach where it not only integrates the
feature requirements but also tries to solve the underlying problem as
well. It is indeed successful in the problem it is trying to solve. However,
the web application is still incomplete and has some limitations that
needs to be considered as future work.

Considering the design choice, it will be easier for the user to select
the subplot directly in order to choose the experiment for which the
command pattern they want to visualize, rather than selecting from a
drop down menu. Further, when the individual signature view shows up
for different experiments, the step graph dimensions are not consistent
for all the step graphs. Moreover, the users found it a challenge to go
back to the main page. Therefore, another design choice would have
been better that needs to be considered as future work where we can
add a home button and a help button to help them navigate to the overall
view. Currently, the design choice to display the overall view is perfect
for limited dataset. However, as the number of experiments being done
in Hein Lab increases, the dataset will grow over time and a different
design choice would need to be considered in a way that the users are
able to find comparisons between the experiments.

Further, as a future work we want to integrate the real-time execution
of the command patterns as the live experiment is performed in Hein
Lab. In addition, to expand our work we will generate sub-sequences
from data mining techniques. These sub-signatures are selected on
the basis of the most frequent commands that appear together in all

of the dataset. The sub-signatures can be encoded in the step graph
via different colors to represent the sub-sequences. Lastly, as another
future work we want to use the anomalous data points to be represented
on our design solution to get an idea of the anomaly data points and
raise a red flag at run-time when the experiment is being performed in
Hein Lab.

8 CONCLUSION

With the advent of self-driving laboratories and use of cyber-physical
systems (CPS) in these labs have raised security concern. To protect
these systems, Intrusion Detection Systems (IDS) needs to in place
which requires some understanding of the data patterns. We specifically
collaborate with a self-driving laboratory in chemical sciences domain
that carries out automated chemical experiments. In this paper, we
present VisCPs, a web application that visualizes the execution of
command patterns where the commands are sent via the CPS used
to carry out automated experiments. This application is helpful in
providing the comparisons between these experiments in an overall
view displaying the subplots. Further, if the user wishes to understand
the pattern of a particular experiment they can select the experiment
from the drop down menu leading them to another page. This page
displays the individual signature of the selected experiment along with
its details as a step graph helping the user to understand how the
command pattern varies over time for a specific experiment. The
user is able to zoom, pan, auto-scale and download the step graph
to analyze it offline. For our evaluation, we asked three users to run
our application and fill a survey containing questions related to the
design and interactivity of the application. The web application was
helpful in determining the command patterns, achieving its goal and
was considered easy to use and interactive. As the dataset increases,
choosing a different design choice is still a question that is left for the
future work.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Tamara Munzner for her guidance and
support. This project was sponsored by the Hein Lab at University of
British Columbia that is the self-driving chemistry lab at University
of British Columbia and Systopia Lab (Systems and Security Lab)
at University of British Columbia that is working on designing the
Intrusion Detection System.

REFERENCES

[1] Anomaly Detection Visualization. https://www.

logicmonitor.com/support/forecasting/anomaly-detection/

anomaly-detection-visualization.
[2] Hein Lab at University of British Columbia. https://groups2.chem.
ubc.ca/jheints1/.

[3] Matter Lab at University of Toronto. https://www.matter.toronto.edu/basic-
content-page/ai-for-discovery-and-self-driving-labs.

[4] I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White. Visualization of
Navigation Patterns on a Web site Using Model-Based Clustering. In Pro-
ceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 280–284, 2000.

[5] A. Karami. An Anomaly-Based Intrusion Detection System in Presence
of Benign Outliers with Visualization Capabilities. Expert Systems with
Applications, 108:36–60, 2018.

[6] B. Luo and J. Xia. A Novel Intrusion Detection System Based on Feature
Generation with Visualization Strategy. Expert Systems with Applications,
41(9):4139–4147, 2014.

[7] S. McKenna, D. Staheli, C. Fulcher, and M. Meyer. Bubblenet: A cyber
security dashboard for visualizing patterns. In Computer Graphics Forum,
vol. 35, pp. 281–290. Wiley Online Library, 2016.

[8] A. Singh. System Call Analysis and Visualization. 2019.

https://www.logicmonitor.com/support/forecasting/anomaly-detection/anomaly-detection-visualization
https://www.logicmonitor.com/support/forecasting/anomaly-detection/anomaly-detection-visualization
https://www.logicmonitor.com/support/forecasting/anomaly-detection/anomaly-detection-visualization
https://groups2.chem.ubc.ca/jheints1/
https://groups2.chem.ubc.ca/jheints1/

	Introduction
	Related Work
	Intrusion Detection Systems and Tools
	Visualizing Patterns

	Data and Task Abstraction
	Data Description
	Task Description

	VisCPs
	Experiments Overall View
	Individual Signature View
	What-Why-How Framework
	Use Case Scenario

	Implementation
	Data Reading and Processing
	Visualizing
	Milestones

	Results
	Discussion and Future Work
	Conclusion

