Visualizing Android Features Through Time:
Project Proposal

Michael W. Tegegn
ECE department at University of British Columbia, Canada
Email: mtegegn@ece.ubc.ca

Abstract: Intentionally left blank

1 Introduction

Android is comfortably the most popular mobile operat-
ing system in the world with around 70 percent of the market
share and close to 2.5 billion active users worldwide [5] .
The open-source software has been the favorite mobile oper-
ating system since early 2010’s for big mobile manufacturing
companies like Samsung and LG. Able to run on this system,
there are over 3 million android applications on Google Play
alone.

Sadly, malicious applications exist even on secure ap-
plication markets like Google Play itself. To detect such ma-
licious applications, several approaches have been proposed
including machine learning approaches. One effective ma-
chine learning approach is training a binary classifier for be-
nign and malware applications using features extracted by
examining android APK files.[2, 6, 4] Since android features
may change through time, machine learning models that are
based on APK features may lose robustness for application
data from different versions or development years. To make
full use of android features for malware detection algorithms,
it is important to understand how the android feature space
has changed over time, including information on the features
added, the relationship between certain features, trends in
how the android feature space has changed, and distinctive
features for the benign and malware classes. And to gain
a deeper understanding of the android feature space and its
evolution through time, I propose visualizing the kinds and
quantities of android features over some time period.

I am only currently being exposed to this area as I have
only just started my studies as a Master’s student. Through
this project, I plan to acquire an insightful experience on an-
droid security. I am generally interested in safety and secu-
rity of Machine Learning Applications, and so I think this is
a great subway to be exposed to such research.

2 Related Work

Previous work have devised ways to use android features
for machine learning applications. The popular 2014 tool
DREBIN was one of the pioneers in this field.[2] DREBIN
was a static malware detection tool that extracted features
from the android application data and trained a Linear Sup-
port Vector Machine (SVM) based on these features. The
features were extracted by searching for the occurrence of
the strings corresponding to one of the eight feature families
they discussed. More of this is discussed in the Data and
Abstraction section. Their results were promising. DREBIN
was able to achieve comparable results to the then top of the
line commercial anti-viruses all.

Further research on this area suggested that adjusting
the feature weights for the linear support vector machine
to be bounded between some small interval aids in train-
ing a more robust classifier. [6] The authors proved this by
carefully crafting malware applications to bypass DREBIN’s
approach of letting the model weights be determined com-
pletely through vanilla SVM algorithm. The authors pro-
posed an approach named Sec-SVM that aims to mitigate
the effect of a features with very high weights in the final
trained model. They proved that if the classification was
heavily dependent on a few features, simply adding or re-
moving those features contributes significantly to the classifi-
cation outcome. Therefore, by restricting the feature weights
to not exceed a certain threshold, one can mitigate the effect
of the presence of a single feature on overall classification
of the application. The paper also suggests that 10,000 of
the highest weighted features from the DREBIN implemen-
tation suffice to train a model without significantly impacting
its accuracy.

To further strengthen the robustness of such classifiers
under attach, Michael Cao et al. [4] proposed an approach
where more emphasis is given to features that are more com-
mon to malware than benign applications. The authors ac-
knowledged that it is easy for malware applications to appear
benign by adding ineffectual features more commonly found
in benign applications. Therefore, focusing on features that
are more common in benign applications will help the clas-
sifier to be more robust to such carefully crafted attacks.

Some visualization approaches on android features in-
clude works by Hosseinkhani et al [7] who aimed to visualize
the permission component of android applications and Bacci
et al [3] visualized the dynamic trace of potentially malware
activity on android applications.

As far as visualizing the features themselves is con-
cerned, i.e. not the feature weights of the SVM models or
similarity between features, I am yet to find a good related
work to find my project up on. From what I have discovered
so far, the change in the number and type of features through
a full decade worth of android OS history has not been ex-
tensively studied. And I believe visualization of the feature
space through an extended period of time can prove to pro-
vide interesting insights for Machine Learning applications.

3 Data and Task Abstraction
3.1 Android Applications

For this project, I decided to work on two existing
datasets. One is the original DREBIN dataset that was col-
lected from the period 2010 to 2012. Analysis on the APK
files in this dataset using the compilation date suggests that
the application packages were compiled in a period span-
ning 2008 to 2012. This dataset shows a significant skew
in the number of available samples for each year in the five
year span. 2010 has the least number of applications in this
dataset at 32 samples. 2012 has the largest number of ap-
plications in at 5535 samples. The DREBIN dataset is a
good benchmark for a time aware analysis as it is a basis
for several literature in the field of malware detection. The
DREBIN dataset is also the first dataset that such feature ab-
straction and machine learning based malware detection was
experimented on. Analyzing this dataset can give insight-
ful observations on how much the feature abstraction has
been affected since the authors first proposed the approach.
Drebin Dataset summary:

2008: 302 samples
2009: 32 samples
2010: 571 samples
2011: 4579 samples
2012: 5535 samples

The second dataset is the VT Dataset that has class
labelling and dating information extracted from VirusTo-
tal.[10] This dataset contains applications spanning the years
2016 to 2019. In this four year window, the year 2019 has
the least number of applications at 396 samples and the year
2017 has the largest number of applications at 1033 sam-
ples for this dataset. Similar to the DREBIN dataset, the
VT dataset has been used to train a malware classifier us-
ing SVM. Information about the achieved accuracy and the
optimal features selected by the SVM using dataset is read-
ily available which makes it a convenient dataset for my
time aware analysis. Visualizing this dataset along side the
DREBIN dataset may uncover persistent or shifting trends in
android features during the two disconnected timelines.

VT Dataset summary:

2016: 3077 samples
2017: 10033 samples
2018: 8983 samples
2019: 396 samples

Both of the datasets have roughly equal number of be-
nign and malicious applications. This is important to remove
unintended data bias towards either the benign or malware
class. Labelling the datasets as either benign or malware was
done with the help of AndroZoo [1] and flagging applica-
tions that have been labelled as viruses by multiple antivirus
scanners in VirusTotal [10] as malicious. Applications not
flagged by any of the antiviruses are labelled benign.

3.2 Extracting Features

After collecting the data, the features are extracted us-
ing DREBIN’s definitions. In DREBIN, there are 8 families
of android features. Table 1 is from Demontis et al [6] and
summarizes the 8 feature sets/families from DREBIN. Each
set can have thousands of features associated with it.

TABLE 1
Overview of feature sets.

Feature sets

S1 Hardware components
manifest [)12 Requ?ste_d permissions

S3 Application components

S4 Filtered intents

Ss Restricted API calls

S¢ Used permission
dexcode S7 Suspicious API calls

Ss Network addresses

Fig. 1. Available feature sets

An android feature in the case of DREBIN is nothing
more than a functionality present in the android application.
Every android application package contains an AndroidMan-
ifest.xml file and one more executable DEX files. The pres-
ence of an andriod feature can be easily inferred from either
the DEX or Manifest files in the application bundle by sim-
ply looking for the presence of a particular string. Feature
sets 1-4 in the table 1 can be retrieved using the DEX file
of the APK and feature sets 5-8 can be retrieved by scan-
ning the APK’s manifest file. These features are collected
using static analysis. A script that extracts the features is
ran for each application to collect the features by searching
for these special strings and merge the features found in all
applications to form a giant feature set. Below is 6 example
features that can be found in an android application. The first
three fall under the set S5 and the next three fall under set Sy.

RestrictedApiList_android.widget.VideoView.setVideoPath

RestrictedApiList_android.location.LocationManager.isProviderEnabled

RestrictedApiList_android.widget.VideoView.pause
IntentFilterList_android.intent.action.ZC
IntentFilterList_android.intent.action.U
IntentFilterList_android.intent.action.Y

challenge of feature updates that will add bias to the visu-
alization of older vs newer features. The results upon suc-
cessful completion of this task will include the number of
features available for each class and each calendar year.

One visualization technique for this task is to repre-
sent the number of features for each of the 8 feature sets
using a steam graph that spans the time range of the two
datasets. Figure 2 shows such plot of the DREBIN dataset
on an extended feature set list. In Figure 2, the hue channel
is used to represent the extended feature sets and the length of
the graph represents the number of features collected during
some year of the dataset. It shows an expected usage rate in-
crease for each feature set. One can infer that the feature set
ActivityList shows the greatest increase in usage frequency
in the 5 year period. In the year 2019, there is an expected
skew becasue of the number of available data being small.
This presents another challenge on how to make use of this
dataset by mitigating the effects of the small number of sam-
ples collected for the year 2009.

3.3 Features to Vectors

After the features are extracted, machine learning based
malware detectors will need to represent every application
as a feature vector with 0’s and 1’s for each feature. 1 for
a feature means the application contains that feature and 0
for a feature means the application does not contain that fea-
ture. Accuracy and Robustness measures of models that will
be discussed in this project are based on such an abstraction.
This abstraction is also used in the feature selection algo-
rithms to visualize which features tend to be selected. This
will be discussion in later sections.

3.4 Abstract Data

For visualization, every Android feature is a categorical
attribute present in each of the samples in our dataset. The
development year of the application is an ordered attribute
for the dataset. Feature sets add a categorical abstraction to
the features. The two classes of applications, namely be-
nign and malware further categorize the applications in the
dataset. Using these abstractions, derived attributes like fea-

180,000 Feature_Set

@ ActivityList

@ BroadcastReceiverList

@ ContentProviderList
HardwareComponentsList

@ IntentFilterList

© RequestedPermissionList
RestrictedApiList
ServiceList

@ SuspiciousApiList
URLDomainList
UsedPermissionsList

160,000

140,000

120,000

100,000
—_—

I —

ture count in an Android file, feature count in android fami-
lies, maliciousness of features are taken as ordinal attributes
in the dataset.

3.5 Tasks

Visualizing the Android features in the two datasets is
aimed at accomplishing the following tasks. Note that these
tasks may be refined as the project progresses.

1. Analyze feature trends if they exist

2. Contextualize the rate of growth of Android applica-
tions.

3. Infer important features that may contribute to the ro-
bustness of an SVM model

4. Explain the results of SVM model performance in terms
of precision and recall

5. Explain the results of feature selection algorithms

4 Solution
4.1 Goal 1: Accommodate for a very large feature space
The aim of this study is visualizing DREBIN based fea-
tures in the two datasets help understand how much android
features have evolved over the years and the results of SVM
classifiers. However, the sheer number of available features
using the aforementioned feature space make this task chal-
lenging. Collecting thousands of android samples for each
year from the two datasets increase the distinct features to
close to 100,000. Hence, my visualization should accommo-
date for such a large feature count. There is also the added

80,000

Sum of count

60,000

40,000

20,000

072008 2008 2009 2009 2010 2010 2011 2011
year

Fig. 2. Stream graph for evolution of the usage of feature sets on
DREBIN Dataset

4.2 Goal 2: Visualize feature drift
After labelling the application data as either benign or
malware, I plan to look for any feature drift/migration from
one class to another. Some of the questions that a successful
completion of this task could answer are the following. Do
some features that have historically been more common in
either benign or malware applications suddenly or gradually
start becoming more common in applications of the opposite
class? Are there certain features we can confidently say are
always more common in apps of one of the two classes? Is
there a time in android version history that the feature distri-
bution in either of these classes has drastically changed?
One visualization technique for this task will be to select
a handful of “important” features and construct a heat map
as in figure 3. These important features are still The right
labels can be used to represent features and the bottom labels
to represent the development years of the applications. The
heat map entry will encode the information (percentage of

malware apps containing this feature — percentage of benign
apps containing this feature).

Maserati Bora
Ford Pantera L
Ferrari Dino
Mazda RX4 Wag
Mazda RX4
Lincoin Continenta
Cadillac Fleetwooc
Chrysler imperial
Camaro Z28
Duster 360

Merc 450SLC
Merc 450SE
Merc 450SL
Pontiac Firebird
Hornet Sportabout
AMC Javelin
Dodge Challenger
Honda Civic
Toyota Corolla
Fiat 128

Fiat X1-9

Volvo 142€
Datsun 710

Lotus Europa
Porsche 914-2
Merc 280C

Merc 280

Merc 230

Merc 240D
Toyota Corona
Hornet 4 Drive
Valiant

> & =

disp
carb
drat
gear

EU)U)
s g >

gsec

Fig. 3. Heat map to represent potential feature drift

4.3 Goal 3: Look for associations between features and
malware families

Additional information about the applications can be
found in public datasets like RmvDroid and VirusTotal.
Grouping android applications into suitable families is a re-
search topic and there is no officially recognized distinction.
However, for the purpose of this study, I can use consistent
labels for malware applications and visualize the feature dis-
tributions for each application family. This task is more ap-
propriate for Malware applications since extensive studies
mainly focus on them and I can resort to using one of the
specified metrics to group my dataset of malware applica-
tions. Results for this section of the work should provide
insightful explanations on the presence of any correlations
between the subsets of features and malware families, i.e.
do some features exist more abundantly on specific malware
families?

One way to show this will be using stacked bars as in fig-
ure 4. The hue in the bars can represent the malware families
and a bar will be constructed for each interesting feature.

4.4 Goal 4: Visualize feature drift

Visualize the result of feature selection algorithms. One
way to visualize such a selection is using scatter plots with
point marks for the features and using hue to distinguish
between selected and non-selected features. The horizontal
axis will represent the development year as usual. The verti-
cal axis encode maliciousness of the feature assessed by how
often the feature appears in one class as opposed to the other
class.

Fig. 4. Stacked bars for relationship between features and android
families

4.5 Implementation

All the feature extraction and abstraction tasks are done
using Python. I use Jupyter notebook to run codes. To con-
struct many of these visualizations, I am using the python li-
brary altair since I will be writing python scripts for data col-
lection and abstraction phase of this project. For some rudi-
mentary analysis, [am also using the python library plotly.
And further tweaks to the vis techniques given above will
happen depending on the final data distribution.

5 Scenario

A user wants to understand how android applications
have evolved over the years and what that means for exist-
ing android malware detection software. The user sees a plot
on feature sets to get a perspective of the number of features
available and how much each feature set contributes to the
large feature count.

The user then sees a heatmap that shows how a selected
number of features evolve in their malicious tendencies over
a period of time. The user will have two separte visualiza-
tions using the two separate datasets as to see if the same
trend persists in the two separate time frames. Using this
visualization, the user can infer which features have con-
sistently been more abundant in malicious applications and
which have shifted their tendencies. The user will also be
able to associate the features that exhibit a trend to one of
the the android families. This way he/she can reason about
which feature sets are actually important.

After looking at the interesting features. The user will be
shown some feature selection algorithms and their outputs.
The user will decide if any of these algorithms have suc-
cessfully selected the aforementioned interesting features.
He/she can reason about which selection is better this way.

After the feature selection visualization, the user will be
presented with the results of the SVM classifier based on the
different selected features. This will help the user understand
if the feature selection algorithm that included the interesting
features does indeed perform well in the case of classification

using an SVM thereby consolidating the findings.

6 Milestones

Date Task hrs | Status
Nov 7 Literature reading 8 Done
Nov 7 Data Collection 4 Done
Nov 7 Apk to Features 4 Done
Nov 10 Get familiar with altair 2 Done
Nov 10 Get familiar with plotly 2 Done
Nov 16 Project update write-up 3 Done
Nov 16 | Goal 1: Visualize feature sets 8 | working
Nov 16 Project Updates — —
Nov 23 Heat map for Goal 2 5 To do
Nov 24 Post Update Meetings — —
Nov 23 Stacked bars for Goal 3 5 To do
Dec 10 Discussions on feature drift 8 To do
Dec 12 | Feature selection algorithms 8 To do
Dec 14 | Plot selection algorithm results | 8 To do
Dec 14 | Explain model performances 8 To do
Dec 15 Slide Prep and write-up 6 To do
Dec 15 Final Presentations — —
Dec 15 Report write-up 4 To do
Dec 17 Final Paper Submission — —

References

(1]

(2]

(3]

Kevin Allix et al. “AndroZoo: Collecting Millions of
Android Apps for the Research Community”. In: Pro-
ceedings of the 13th International Conference on Min-
ing Software Repositories. MSR ’16. Austin, Texas:
ACM, 2016, pp. 468—471. ISBN: 978-1-4503-4186-
8. DOI: 10 .1145/2901739.2903508. URL:
http://doi.acm.org/10.1145/2901739.
2903508.

Daniel Arp et al. “DREBIN: Effective and Explain-
able Detection of Android Malware in Your Pocket.”
In: NDSS. The Internet Society, 2014. URL: http :
//dblp.uni-trier.de/db/conf/ndss/
ndss2014.html#ArpSHGR14.

Alessandro Bacci et al. “VizMal: A Visualization
Tool for Analyzing the Behavior of Android Mal-
ware”. In: Jan. 2018, pp. 517-525. por: 10.5220/
0006665005170525.

(4]

(3]

(6]

(7]

(8]
(9]

(10]

Michael Cao et al. “On Benign Features in Malware
Detection”. In: Proceedings of the 35th IEEE/ACM In-
ternational Conference on Automated Software Engi-
neering. ASE ’20. Virtual Event, Australia: Associa-
tion for Computing Machinery, 2020, pp. 1234-1238.
ISBN: 9781450367684. DOI: 10.1145/3324884.
3418926. URL: https://doi.org/10.1145/
3324884.3418926.

David Curry. “Android Statistics (2021)”. In: Busi-
ness of apps (June 3, 2021). URL: https: //www.
businessofapps . com / data / android -
statistics/ (visited on 10/21/2021).

Ambra Demontis et al. “Yes, Machine Learning Can
Be More Secure! A Case Study on Android Mal-
ware Detection”. In: IEEE Transactions on Depend-
able and Secure Computing 16 (2019), pp. 711-724.
Mona Hosseinkhani Loorak, Philip W. L. Fong, and
M. Sheelagh T. Carpendale. “Papilio: Visualizing An-
droid Application Permissions”. In: Computer Graph-
ics Forum 33 (2014).

Tamara Munzner. Visualization analysis and design.
CRC press, 2014.

Feargus Pendlebury et al. “TESSERACT: Elimi-
nating Experimental Bias in Malware Classification
across Space and Time”. In: 28th USENIX Se-
curity Symposium (USENIX Security 19). Santa
Clara, CA: USENIX Association, Aug. 2019,
pp. 729-746. 1SBN: 978-1-939133-06-9. URL:
https://www.usenix.org/conference/
usenixsecurityl9 / presentation /
pendlebury.

VirusTotal. URL: https://www.virustotal.
com/gui/home/.

