Visualizing Android Features Through Time

Michael W. Tegegn

VT Dataset
Show: | All Features . | Sort Popularity - | Select Odds Ratio
By: Wetrics:
t_android. permission.camera - -

intentfilterlist_android.intent.action.service_state
ist_android. read_settings
intentfilterfist_android intent action battery_changed

intentfilterlist_android.intent.action.sim_state_changed
intentfilterlist_android.intent.action.any_data_state
stedpermissionlist_android.permission.system_alert_window
t_android permission.broadcast_sticky
restrictedapilist_android. media.mediaplayer.reset-
tentfilterlist_android. bluetooth.adapter.action.state_changed -

I+ t_android.p: read_phone_state -
dpermissionslist_android permission. write_external_storage -+ 0.4
i t_android.media. stop- 034
‘nlist_android permission.access_location_extra_commands 0

access_wifi_state-
receive_mms

t_android.
ist_android.
intentfilterlist_android.intent.action.screen_on |
{_android.| fon.change_(
restrictedapilist_android. media mediaplayer pause -

intentfilterlist_android.net.wifi.state_change

2016 2017 2018

Maliciousness: 0.8839285714285714

Feature: intentfilterlist_android.intent.action.screen_on
Count: 111

-1 -0.5 0 0.5 1

8839285714285714

t_android.intent.action.screen_on

2019

© N
3 3

2
]

8
< Normalized Frequency per year of selected feature

ist_android.intent.acti _on

Fig. 1. A snapshot of an android feature maliciousness visualization through heatmap, left, and a normalized frequency distribution

visualization of a single feature, right.

Abstract— Different approaches have been proposed to generate Android malware detection systems. Some of these approaches
use Machine learning methods by first statically extracting features from Android packages and building SVM classifiers for Benign
and Malware classes. In training these models, applications used in training have been advised to temporally precede application
data available for testing the models to remove temporal bias. Therefore, since the models are trained on a pool of features, selecting
relevant features to train these classifiers is a crucial problem. In addition, since Android evolves over time, these features may exhibit
shifting trends when analyzed through an extended period of time. This paper describes a visualization tool to visualize individual
android features through an extended period of time in the aim of identifying feature trends and assisting feature selection. An
interactive heatmap and a bar chart in a side-by-side multi-view aid in analyzing derived properties of features for Android feature

space understanding and feature selection.
Index Terms—Android Malware Detection, Feature Selection

1 INTRODUCTION

Android is the most popular mobile operating system corresponding
to around 70 percent of the market share with around 2.5 billion ac-
tive users worldwide [6]. The open-source software has been a target
operating system since early 2010’s for big mobile manufacturing com-
panies including Samsung and LG. The Google Play Store, the largest
application store for Android, hosts around 3.5 million applications at
the time of this writing.

Unfortunately, malicious Android applications, also called malware,
exist even on secure application markets like Google Play. To detect ma-
licious applications, several approaches have been proposed including
machine learning approaches. One effective machine learning approach
is training a binary classifier for benign and malware applications using
features extracted by statically analyzing Android source and binary
files [2] [7] [4]. This approach involves collecting and labelling Android

e Michael W. Tegegn is an MASc student in ECE department at the University
of British Columbia. E-mail: mtegegn@ece.ubc.ca.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

applications, splitting them to training and testing datasets, extracting
features from the training samples, training a binary classifier model
and evaluating the model on the testing dataset.

In splitting the Android samples to the training and testing datasets,
all the samples in the training dataset should be strictly temporally
precedent to the testing ones [11]. That is, training should be done
using Android applications from earlier years, and testing using appli-
cations from the later years. This is to remove bias in the classifier
caused by including future information in the training phase. However,
since android features may change through time, selecting features that
exhibit consistent behavior over an extended period of time is crucial
to ensure a reliable model performance. Hence, to make full use of
Android features for machine learning based malware detection algo-
rithms, it is important to understand Android features and how they
evolve over time including information on the features added, features
that are obsolete, trends in how the Android feature space has changed,
and distinctive features for the benign and malware classes.

Thus, to gain a deeper understanding of the Android feature space
and select temporally consistent features, we propose visualizing the
kinds and quantities of Android features over some time period. We
hypothesize that visualizing Android features over an extended time pe-
riod will aid in identifying temporary consistent features to be selected
for training classifier models.

2 BACKGROUND

This section provides background information on Android, Android
features Feature selection.

2.1 Android Applications

Android is an open source mobile OS with multiple active developers.
Java and Kotlin are two of the most common languages through which
android applications can be developed. Once an android application is
compiled, it will composed of two types of files. A manifest file, which
contains different configurations for running the android application
including requested permissions, and a binary DEX file that is the
compiled code able to run on Android infrastructure Virtual Machines.

2.2 Android Features

Android features are extracted from statically examining the two files
that make up an Android application. Specifically, this work will focus
on a feature sets described by DREBIN [2]. The features are grouped
into eight feature sets extracted from manifest and DEX files. Figure
2 shows the overview of the available feature sets. We refer to these
Android features as features throughout this writing.

TABLE 1
Overview of feature sets.

Feature sets

S1 Hardware components
S2 Requested permissions

i fest C
manires S3 Application components
S4 Filtered intents
S5 Restricted API calls
dexcode Se¢ Used permission

S7 Suspicious API calls
Ss Network addresses

Fig. 2. Available feature sets

Each feature set encompasses a number of features. For example,
an application may request 10 different types of permissions, in this
case it will have 10 features from the Requested Permissions feature
set. Note that any application can be represented as a set of the features
it contains. The application can be labelled benign or malware based
on malicious activity

2.3 Feature Selection

In machine learning, feature selection is the process of selecting a sub-
set of relevant features for developing a predictive model. Benefits of
feature selection include model simplification, shorter training time,
overfitting, reduction, noise elimination, etc. In the case of Android fea-
tures, feature selection aims to identify relevant features that correctly
capture test data distribution.

3 RELATED WORK

In this section, previous works on android feature selection, android ap-
plication visualization and android feature visualization are discussed.

3.1 Android Feature Selection

Previous works have devised ways to use android features for machine
learning applications. The popular 2014 tool DREBIN was one of the
pioneers in this field. [2] DREBIN was a static malware detection tool
that extracted features from the android application data and trained a
Linear Support Vector Machine (SVM) based on these features. The
features were extracted by searching for the occurrence of the strings
corresponding to one of the eight feature families they discussed.

Further research on this area suggested that adjusting the feature
weights for the linear support vector machine to be bounded between
some small interval aids in training a more robust classifier. [7] The
authors proved this by carefully crafting malware applications to by-
pass DREBIN’s approach of letting the model weights be determined
completely through vanilla SVM algorithm. The authors proposed an
approach named Sec-SVM that aims to mitigate the effect of a features
with very high weights in the final trained model. They proved that
if the classification was heavily dependent on a few features, simply
adding or removing those features contributes significantly to the clas-
sification outcome. Therefore, by restricting the feature weights to not
exceed a certain threshold, one can mitigate the effect of the presence
of a single feature on overall classification of the application. The paper
also suggests that 10,000 of the highest weighted features from the
DREBIN implementation suffice to train a model without significantly
impacting its accuracy.

To further strengthen the robustness of such classifiers under attach,
Michael Cao et al. [4] proposed an approach where more emphasis
is given to features that are more common to malware than benign
applications. The authors acknowledged that it is easy for malware
applications to appear benign by adding ineffectual features more com-
monly found in benign applications. Therefore, focusing on features
that are more common in benign applications will help the classifier to
be more robust to such carefully crafted attacks.

3.2 Android Application Visualization

Rory et al [5] plotted complex features into dendograms as a visual way
of distinguishing and thereby clustering android applications. In their
work, circular dendograms are used where the outer leaves represent
a hierarchical positioning of android samples based on their features.
The samples are clustered as one moves into the center of the circular
dendogram. Works by Santhanam et al [12] and Onwuzurike et al [10]
proposed a visualization to systematically explore android java code to
look for signs of potential malicious activity. Their visualization uses
marks and edges to represent different methods and call sequences of
the android application. They proposed that carefully tracking Android
Framework API calls can hint on malicious behavior. Somarriba et
al [13] have devised a similar visualization technique with the help
of payloads of malicious activity where interactive dendograms in
vertical layout are encoded to show potentially malicious activations.
By coloring the edges to suspicious API calls, the authors are able to
depict where the malicious payloads are activated.

3.3 Android Features Visualization

Some visualization approaches on android features include works by
Hosseinkhani et al [8] who aimed to visualize the permission compo-
nent of android applications and Bacci et al [3] visualized the dynamic
trace of potentially malware activity on android applications. Gabriella
Xiong and Michael Cao in a previous iteration of this course have pro-
posed an interactive visualization where scatter plots show application
similarity based on a selected number of features. By allowing users
to select samples for training an SVM classifier, they visualized the
weights assigned to each feature in the trained model to outline the
importance of specific features for classification.

4 DATA AND TASK ABSTRACTION
4.1 Android Application Datasets

In this work, two separate existing datasets are considered. One is
the original DREBIN dataset which contains samples collected before
2014. Analysis on the APK files in this dataset using the compilation
date suggests that the application packages were compiled in a period
spanning 2008 to 2012. This dataset shows a significant skew in the
number of available samples for each year in the five-year span. 2010
has the least number of applications in this dataset at 32 samples.
2012 has the largest number of applications in at 5535 samples. The
implication of such an imbalance in the dataset is explained further in
the Discussion section of this paper. The DREBIN dataset is a good
benchmark for a time aware analysis as it is a basis for several literature
in the field of malware detection. The DREBIN dataset is also the

first dataset that such feature abstraction and machine learning based
malware detection was experimented on. Analyzing this dataset can
give insightful observations on how much the DREBIN feature space
changed since the authors first proposed the approach.

The second dataset is the VT Dataset that has class labelling and
dating information extracted from VirusTotal [1]. This dataset contains
applications spanning the years 2016 to 2019. In this four-year window,
2019 has the least number of applications at 396 samples and 2017
has the largest number of applications at 1033 samples for this dataset.
Similar to the DREBIN dataset, the VT dataset has been used to train a
malware classifier using SVM. Information about the achieved accuracy
and the optimal features selected by the SVM using dataset is readily
available. In summary, the two datasets contain applications that are
both timestamped by development year and labelled as either benign or
malware. In addition, both of the datasets have roughly equal number
of benign and malicious applications. This is important to remove
unintended data bias towards either the benign or malware class. The
DREBIN features extracted from each application were also available
as part of the dataset. A summary about the number of application
samples in the two datasets is shown in table 1 .

Dataset Year | Number of Samples
2008 302
DREBIN 2009 32
2010 571
2011 4579
2012 5535
2016 3077
VT 2017 10033
2018 8983
2019 396

Table 1. Table showing sample distribution of the two datasets.

4.2 Feature Selection Metrics

In addition to the android applications represented as DREBIN features,
each dataset also contains a collection of six feature selection metrics
and their results. The feature selection metrics rank the features based
on specific scoring functions. The top 100 features subject to each
feature selection metric are considered in this work. That is, for each
feature selection algorithm, a list of 100 features that algorithm has
selected is recorded.

The six feature selection metrics are common to machine learning
applications, but only their results are considered in this work. The
mathematical formulas and deeper insights about the available feature
selection metrics are considered irrelevant for the purpose of this work.
The short names for the six feature selection algorithms we have col-
lected results from are Chi-squared, Correlation Coefficients, Mutual
Information, Odds Ratio, Popularity Diff and Signed Information Gain.

4.3 Derived Attributes
Using the datasets explained in subsection 1, two attributes are derived.
* One is Maliciousness of an application. Maliciousness of an ap-
plication measures the tendency of a feature to be more prevalent

in malware applications rather than benign applications. Mali-
ciousness for feature x is given by the following formula.

Malicious apps with x —Benign apps with x

Maliciousness =
retou Total number of apps with x

* The second derived attribute is the normalized frequency of fea-
ture x. The normalized frequency of feature x measures how
much feature x is prevalent in the available applications for that

particular year. Normalized frequency for feature x is given by
the following formula.

Apps with feature x
Total number of apps

Normalized Freq =

4.4 Abstract Data

The table below shows the summary of the available dataset types
considered for the visualization section.

Attribute Kind

Cardinality / Range

Feature Categorical | 19,220

Feature Set / Feature Family Categorical | 8

Feature Selection Metrics Categorical | 6

Application Development Year Ordinal VT Dataset: 4

DREBIN Dataset: 5

Maliciousness of a feature Quantitative | -1to 1

Normalized frequency of feature | Quantitative | Oto 1

Fig. 3. Data abstractions

4.5 Task Abstraction

Overall, the visualization aims to allow researchers to analyze the
feature trend shifts through an extended time period. Specifically,
researchers should be able to identify which features shift their mali-
ciousness property or their expected frequency over the visualized time
period. The interactive visualization proposed in this work is aimed to
assist researchers to achieve the following tasks:

1. Analyse the number of features available in each feature set and
their properties

2. Analyze feature trends in feature maliciousness and frequency
distribution over the available years

3. Analyze the properties of features selected by the six feature
selection algorithms

4. Select relevant features that exhibit consistent behaviors over the
time period to use for training a classifier model

5. Identify outlier features in terms of maliciousness and frequency
properties

5 SOLUTION
5.1 Goal 1: Visualize feature maliciousness over time

To visualize the maliciousness of features through the development
years, we used a heatmap where features are listed in the y-axis and the
development years in the x-axis. The individual cells of the heatmap
encode the maliciousness of features through a blue-red diverging color
map. This color scheme was selected after getting feedback from an-
droid malware detection domain experts. The blue color is associated
with benign features while the red color is associated with malicious
features in Android applications. Figure 4 shows this design decision
and encoding. When a feature is not present in any year, the correspond-

intentfilterlist_android.intent.action.package_added -

intentfilterlist_com.android.vending.install_referrer -
broadcastreceiverlist_com.pz test testreceive
intentfilterlist_android. intent action. data_changed

edpe t_android. get_tasks-

restrictedapilist_android.os.vibrafor.vibrate -

list_android.perm n.change_wifi_state -
activitylist_dum.libs.sdkshell keep.helpactivity
servicelist_dum.libs.sdkshell keep.helpservice
servicelist_com.emag.yapz.service busservice

2016 2017 2018 2019

Fig. 4. Maliciousness encoding using heatmap

ing cell is colored black. we considered alternative visualization idioms
for this task. One alternative encoding for the color scheme is using
sequential color scale instead. However, this idiom will make the dis-
tinction between features common in unclear. Using the diverging color
scheme helps to easily distinguish between features more common in
malicious applications from ones mere common in benign applications.
We have also considered using size to encode maliciousness where
traditional bar charts can make comparing maliciousness values easier.
We chose to go against this encoding because it is not scalable for the
number of features available.

5.2 Goal 3: Accommodate for a very large feature space

The aim of this study is visualizing DREBIN based features in the two
datasets to help understand how much feature drift is visible in the two
datasets. However, the large number of available features using the
aforementioned feature space make this task challenging. Collecting
thousands of android samples for each year from the two datasets
increases the distinct features to to tens of thousands. Therefore, the
visualization should accommodate for such a large feature count. To
enable users to easily identify features of interest, we designed methods
to reduce the number of features displayed at one time. For this, we
used filtering. The features can be filtered to display only features from
a specific feature set, or features that have been selected by one of the
feature selection metrics. Figure 5 shows the available options to filter
the data. Other options considered to reduce the size of the features is
to represent all features from the same feature set as a single feature
thereby collapsing thousands of features into a 8 feature sets. However,
this encoding will hide important details about the individual features
while the chosen encoding will preserve information on individual
features.

Features Maliciousness

VT Dataset
Select [GotoTop |

sort)
Show: | All Features v Populari v - _—
_ By: | Popuany Metrics: Golo Bottom |

S
Only Selected 02351489
Activities |
usedn Broadcast Receivers fet_wallpaper-
Content Providers 118851944
suspiciHardware Components itgetdeviceid
activi Intent Filters etworkactivity -
on.screen_off-

titialadactivity
{etcellocation-

None v

Requested Permissions
| Restricted APIs
Japilist_ang Services
ha Suspicious APls
tedapilist_e URL Domains
Used Permissions

ware.location
Htbestprovider -
B.tt.dd.drdsrvi

ST ORI e B R e initoanvina.

Fig. 5. Available filtering methods

5.3 Goal 3: Visualize normalized frequency of features

One of the attributes we chose to visualize is the normalized frequency
of features during different development years. This information is en-
coded using multiple views visual encoding. The normalized frequency
is visualized using bar graphs with the x-axis encoding development
years and the y-axis encoding normalized frequency. This visual encod-
ing allows easy comparison of the availability of features in different
time periods. Figure 6 shows how the frequency bar chart is displayed
as a side view for any selected feature. The feature name is displayed
under the title for the bar chart. This side plot is displayed when users
click at any place along the row of the feature in the heatmap. By show-
ing this plot on demand, we are able to scale the bar chart approach to
visualizing the normalized frequency of features.

5.4 Goal 4: Show selected features for the 6 feature selec-
tion metrics

To analyse the effects of maliciousness or frequency drift in the datasets,
we decided to visualize the results of a few feature selection algorithms
on the heatmap itself using Selection visualization design. The bound-
ary of the individual cells in the heatmap are changed to dotted lines
and the feature name itself is represented in bold face to highlight the
selected features. Figure ?? shows how this is done on the heatmap.

0.9

0.8+

0.7+

0.6

054

0.4

0.3

02+

0.1

0.0

& 2 i 2
T T ® P

Normalized Frequency per year of selected feature

requestedpermissionlist_android.permission.change_network_state

Fig. 6. Frequency chart for feature permission.change_network_state

This decision to embed the selection information on the main heatmap
diagram is to allow users to do an in-place examination of the rela-
tionship between these selected features and other features. One other
way to distinguish these selected features is to color the rows using a
slightly different color encoding. However, this decision will interfere
with the already encoded color channel and confuse users.

usedpermissionslist_android permission.access_wif_state -

ist_android.
intentfilterlist_android.intent.action.screen_on
tedpermissionlist_android.permission.change_configuration

t_android.media. pause -
intentilterlist_android.net.wifi.state_change

t_android. media release-

nlist_android. a

ion.receive_mms

2016 2017 2018 2019

Fig. 7. Selected features shown using dashed borders and bold face

5.5 Goal 5: Allow users to easily find features they are
interested in

For users to make an analysis of the available features, they need to
be able to interact with the visualization for explorative tasks. Users
may need to quickly find features they are interested in or group sim-
ilar features together. To handle these tasks, we implemented view
manipulation techniques where users can sort the displayed features
based on either popularity, maliciousness or feature set. In addition two
quick Goto buttons allow users to quickly scroll to the top or bottom
of the heatmap to analyze feature with extreme values for any of the
sorting attributes. Figure 8 shows features sorted using maliciousness.
where the top of the heatmap shows only features that have the lowest
maliciousness values.

6 IMPLEMENTATION

All the data preprocessing and derived attribute computation is done
using Python in Jupyter Notebooks. We used Plotly and Altair at the
start to examine different visualization idioms. For the visualization
diagrams presented in this paper, we used the JavaScript Library D3
and no additional libraries.

The initial plan was to use plotly and altair for an interactive visu-
alization. However, since more freedom of interaction was required,
specifically in allowing vertically scrollable heatmaps, we used D3 as
the final library,

7 MILESTONES

Table 2 shows a breakdown of the tasks involved in completing this
project.

Date Task Info hours(expected) | hours(actual)
Nov 7 Literature reading Android malware detection, vis techniques 8 8
Nov 7 Data Processing Derived attributes, Logs 4 6

Nov 10 Get familiar with altair Tutorials 2 2
Nov 10 Get familiar with plotly Turorials 2 2
Nov 16 Project update write-up - 3 5
Nov 16 | Goal 1: Visualize feature sets Stream graph, bar graphs 8 7
Nov 16 Project Updates — — —
Nov 23 Heat map using altair Not completed, not suitable 5 3
Nov 24 Post Update Meetings — — —
Nov 27 Get familiar with D3 Tutorials 4 4

Dec 1 Heat map visualization Scrollable feature, color coding, .. 8 8
Dec 3 Heat map visualization Show selected features 3 3
Dec 7 Heat map visualization Filtering and sorting 4 5
Dec 10 Visualize feature frequency Use multiview, encode bar charts 6 4
Dec 12 Train models functionality Using flask, Not completed, Out of time 8 4
Dec 15 Slide Prep and write-up - 6 6
Dec 15 Final Presentations — — —
Dec 17 Report write-up - 4 12
Dec 17 Final Paper Submission — — —

Table 2. Milestone table showcasing the breakdown of tasks for this project
VT Dataset VT Dataset
Show: | All Features v :;:1 Maliciousness~ ;ﬂter?:s: Odds Ratio v Show: :;:1 D y e ;ilteric:s: None o

roviderlist_com.google firebase. provider firebaseinitprovider-
google.android.gms.auth.api.signin.
activitylist_com.unity3d.player.unitypleyeractivity
activitylist_.appentry

google.android.gms. measurement.appmeasurementservice
android.gms.cast. framework.media.

m.google.android.gms. cast frameworl

sgle.android.gms. cast.framework medie. mediaintentreceiver
Joogle.android.gm:
3t_com.google firebase.iid frebaseinstanceidinternalreceiver:
affilterlst_com.google.android.gms.appinvite. action_preview

intentilterlist_com.google.firebase.instance_id_event
seiverlist_com.google.firebase.iid firebaseinstanceidreceiver
tedapilist_android.media.
servicelist_com.google.firebase.iid.firebaseinstanceidservice
J00gle. android.gms. auth.api.signin.internal signinhubactivity
sctivitylist_com. unity,purchasing.googleplay.purchaseactivity

intentfiterfist_com.google.firebase. messaging_event

missionlist_android. permission.mount_unmount_filesystems
requestedpermissionlist_android permission.get_accounts -
requestedpermissionlist_android permission. write_seftings
edpermissionlist_android. permission.change_network_state
requestedpermissionlist_android permission.read_sms
requestedpermissionlist_android permission.receive_sms
requestedpermissionist_android permission.send_sms
westedpermissionlist_android. permission.change_wifi_state
requestedpermissionlist_android permission.get_tasks
stedpermissionlist_android permission.access_fine_location-
dpermissionlist_android permission.access_coarse_location-
Ipermissionlist_android. permission.receive_boot_completed-
‘edpermissionlist_android. permission.read_external_storage -
requestedpermissionlist_android permission. vibrate -
requestedpermissionist_android.permission. wake_lock~
uestedpermissionlist_android. permission.read_phone_state -
Juestedpermissionlist_android permission.access_wif_state -
edpermissionlist_android permission.write_external_storage -
edpermissionlist_android. permission.access_network_state -

t_com.onesignal.

2017 2018

Fig. 8. Features sorted by maliciousness display the most benign features
at the top

8

RESULTS

This section explains results of the visualization diagram proposed and
presents a scenario of how researchers may use this visualization to
analyze feature trends and select features that show consistent mali-
ciousness and abundance characteristics. To do this, we refer back to

the

tasks defined in section 4.5 and present a scenario where a user tries

to do these tasks.

8.1

Scenario

* A researcher wants to understand the number of features avail-
able in each feature set and their properties. In particular, the
researcher wants to know the number and properties of requested
permissions for the 4 year time span from 2016 to 1019. There-
fore, the user thus loads the VT dataset and chooses to show
”Requested Permissions” feature set only. In doing so, the list of
features is filtered out to show only the requested permissions.
In addition, the researcher sorts the data based on popularity to
see which permissions is requested by the most applications. As
Figure 9 shows, the researcher learns that internet permission is
the most requested permission amongst the samples in the VT
dataset. The researcher also learns that internet feature has ma-
liciousness close to 0, since it is color coded as close to white.
The researcher also learns that most of the popular requested
permissions are more associated with malicious applications as

- requestedpermissionlist_android permission.internet- =

2016 2017 2018 2019

Fig. 9. Requested Permissions sorted by Popularity

the heatmap appears red for the majority of applications in view.

* The researcher then wants to analyze feature trends in feature

maliciousness and frequency distribution over the available years.
The researcher explores the heatmap by filtering and sorting the
features using the available metrics to identify key feature trends.
Figure 10 Shows a visible trend in feature associated with SMS
permissions. Using this visualization, the researcher can observe
that SMS permissions are closely tied to malicious activity. The
researcher can also deduce that by looking at the normalized
frequency plots on the side, the features show very similar trends
suggesting that the presence of one of these features means that
the chances of seeing the other SMS related features is high.

The researcher wants to analyze the properties of features selected
by the six feature selection algorithms. The researcher can easily
do this by selecting one of the feature selection metrics from the
drop down menu on the right. In addition the researcher can filter
the features displayed to only show the selected features. This
gives insights on types of features are selected by which type of
feature selection metric. Figure 11 shows features selected by the
Odds Ratio feature selection metric. The researcher understands
that only the Odds Ratio feature selection metric only selects
features that appear to be more prevalent in malicious applications.
Indeed, the Odds Ratio feature selection metric is a one-sided

VT Dataset

Sort
By:

Select

Metrics: flone

Show: | All Features v Popularity v
restrictedapilist_android.app.downloadmanager enqueue
requestedpermissionlist_android.permission.write_sms
sstrictedapilist_android.app.activitymanager.getrunningtasks
missionlist_android.permission.mount_unmount_filesystems
requestedpermissionlist_android permission.get_accounts-
usedpermissionslist_android.permission.wake_lock -
intentfilterlist_android.intent.action.user_present
requestedpermissionlist_android.permission.write_settings
intentfilterlist_android.net.conn.connectivity_change
edpermissionlist_android. permission.change_network_state
requestedpermissionlist_android.p ission.read_sms
requestedpermissionlist_android.permission.receive_sms
requestedpermissionlist_android.permission.send_sms
westedpermissionlist_android permission change_wifi_state
requestedpermissionlist_androfd permission.get_tasks
activitylist_com.google.android. gms.ads.adactivity
restrictedapilisf_android.app.notificationmanager. notify -
stedpermissioniist_android. permission.access_fine_location -
jellyb wdeinfobridge. performaction -
dpermissionlist_android.permission.access_coarse_location-

rec

2016 2017 2018
- -
‘ 1 I—G 5 ‘0 IO 5 1‘

Fig. 10. A plot showing a visible trend in SMS permissions

feature selection method, which means it only selects features
that are more prevalent in malicious applications by formula
design. Without knowing the formula involved, the clearly sees
that features selected by the Odds Ratio feature selection metric
are correlated with malicious applications.

VT Dataset
Show: | Only Selected = 2‘;" Popularity + nsnee';f:‘s Odds Ratio -

ssionlist_android.permission.access_cache_filesystem
Ipermissionlist_android.permission.access_mtk_mmhw
«dpermissionlist_android.permission.receive_wap_push
dpermissionlist_android.permission.write_apn_settings:
sionlist_com.android.launcher.permission.read_settings
rmissionlist_android.permission.update_app_ops_stats.
intentfilterlist_android. provider.telephony.sms_deliver-
intentfierlist_com.door.pay.sdk.app.action
intentfilterlist_android.intent.action.notification_add
intentilterlist_android.intent.action.notification_update-
intentfiterlist_android.intent.action.notification_remove.
intentfilterlist_android.intent.action.service_state
uestedpermissionlist_android.permission.read_settings.
intentfilterlist_android.intent.action.sim_state_changed-
intentfilterlist_android.intent. action.any_data_state

is ndroid.permission.receive_mms

intentiltorlist_android.intent.action.screen_on
intentilterlist_android.net.wifi.state_change-
issionlist androi ission.write sms.

Fig. 11. Features selected by the Odds Ratio Selection metric appear to
all be extracted from malicious applications. This is information that gets
encoded in the heatmap without knowing the feature selection formula
for Odds Ratio metric.

* The researcher wants to select features that exhibit consistent
behaviors over the time period to use for training a classifier
model. To do this task, the researcher filters and clicks along
a row to display the frequency bar graph of the corresponding
feature. This interaction has been shown in Figure 10 where a
user clicks on a row and the bar graph is represented on the side.

The user then records features that are consistently malicious or
consistently benign through the years. In addition the user filters
from these features by looking at their normalized frequency bar
chart by choosing only the features the are consistently present
throughout the different development years visualized. For ex-
ample the SMS features exhibit similar characteristics and are
reasonably abundant, 15% to 45%, which suggests that selecting
these features can improve model’s performance.

Goto Top
Goto Bottom

-

v

o & +* <
~ Normalized Frequency per year of selected feature
2019
ist_android.permission.send_sms

* The researcher wants to identify outlier features in terms of ma-
licious and frequency properties. The researcher can easily go
to top or bottom after sorting the features by their maliciousness
attribute to identify the most and least malicious applications.
This interaction has been discussed in section 5.2.

9 DISCUSSION AND FUTURE WORK

This section will discuss about the strengths and limitations of the
approach, lessons learned during this project and potential future work.

9.1 Strengths

This approach was first motivated in an effort to explain feature selec-
tion metrics’ results on android features. Training SVM classifiers on
feature selected using different feature selection metrics results in vary-
ing model performances. Understanding the difference in the features
elected using these selection metrics allows researchers to better explain
the results. In this approach, two attributes capable of exhibiting shifts
in the datasets were analyzed. Maliciousness and abundance. Using a
color scheme well known by domain experts also increases easy inter-
pretation of heatmap to domain experts. Furthermore, encoding such
derived attributes in a familiar heatmap encoding provides researchers
with visual information on attributes that would have rather required
mathematical computation.

For the exploratory task of finding consistently-behaving features,
this visualization enables interactivity for researchers to easily find the
features and analyze trends.

9.2 Limitations

One crucial limitation of the approach is the skew in the dataset. As
table 1 shows, the two datasets used to construct the heatmap are
severely skewed. Consequently, there is a threat to validity for the
findings in the years that contain only a small number of samples.
Although the frequency plot is normalized by the number of samples,
the small number of features in some years still imply that some features
do not even have samples associated with them. Consequently, a large
amount of dark boxes are visible in areas where there are only a small
number of features. This implies that our analysis maybe ill-advised
durinig these years.

Another limitation is that choosing to analyze the two datasets sep-
arately, we have restricted the time span where feature trends can be
observed. This means that we cannot make conclusive remarks about
features disappearing because of Android version updates.

In addition, visualizing all available features still has scalability
issues. The use of vertical scroll bars on the heatmap canvas showing all
features does not suffice for researchers to make insightful observations.
The number of available features is still too large and further abstraction
is required.

9.3 Lessons learned

During the course of this project, we applied different visualization
idioms discussed in class to find the best fitting encoding. We learned
how to use Python visualization libraries like altair and Plotly. We
also learned a JavaScript library D3 for constructing highly flexible
visualization designs. Through different iterations of the project, we
learned the process of refining the project’s goal and implementation
details to design a useful tool that we can use ourselves.

Moreover, using the tool to analyze the two datasets has given us
insightful observations on the feature selection metrics themselves. In
addition, through iterative feedback we have also learned the process
of formal writing useful for writing scientific papers.

9.4 Future work

Because of the time constraints in doing the project, some planned
functionalities were not included. One is the ability to train models
using features selected by the researchers using the visualization tool
and displaying results. This will allow researchers to better understand
the implications of using features with certain feature trends. Another
functionality not completed due to time constraints is allowing users
to drag and drop a selected number of features. This functionality can
allow users to group features they are interested in together to analyze
the maliciousness of features throughout an extended time period.

The scrollable and interactive heatmap presented in this work can be
further extended to encode any derived attribute for visual analysis of
features in machine learning context.

10 CONCLUSION

In this paper, we present a visualization technique to analyze android
feature maliciousness and abundance trends through time. The visual-
ization design allows Android malware detection researchers to see how
features of Android applications developed in different years change
over time. In addition, the visualization allows researchers to identify
features that exhibit consistent behaviour in maliciousness and abun-
dance. The visualization focuses on visualizing the features through an
interactive canvas to aid in explorative tasks of locating and analyzing
the subset of features that the researchers are interested in.

REFERENCES

(1]
(2]

(3]

[4]

[3]

(6]
(71

(8]

[9]
[10]

[11]

[12]

[13]

Virustotal.

D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and K. Rieck. Drebin:
Effective and explainable detection of android malware in your pocket. 02
2014. doi: 10.14722/ndss.2014.23247

A. Bacci, F. Martinelli, E. Medvet, and F. Mercaldo. Vizmal: A visualiza-
tion tool for analyzing the behavior of android malware. pp. 517-525, 01
2018. doi: 10.5220/0006665005170525

M. Cao, S. Badihi, K. Ahmed, P. Xiong, and J. Rubin. On benign features
in malware detection. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 20, p. 1234-1238.
Association for Computing Machinery, New York, NY, USA, 2020. doi:
10.1145/3324884.3418926

R. Coulter, L. Pan, J. Zhang, and Y. Xiang. A visualization-based analysis
on classifying android malware. In X. Chen, X. Huang, and J. Zhang, eds.,
Machine Learning for Cyber Security, pp. 304-319. Springer International
Publishing, Cham, 2019.

D. Curry. Android statistics (2021). Business of apps.

A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli. Yes, machine learning can be more
secure! a case study on android malware detection. IEEE Transactions on
Dependable and Secure Computing, 16:711-724, 2019.

M. H. Loorak, P. W. L. Fong, and M. S. T. Carpendale. Papilio: Visualizing
android application permissions. Computer Graphics Forum, 33, 2014.
T. Munzner. Visualization analysis and design. CRC press, 2014.

L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross, and
G. Stringhini. Mamadroid: Detecting android malware by building markov
chains of behavioral models (extended version). ACM Trans. Priv. Secur.,
22(2), apr 2019. doi: 10.1145/3313391

F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro.
TESSERACT: Eliminating experimental bias in malware classification
across space and time. In 28th USENIX Security Symposium (USENIX
Security 19), pp. 729-746. USENIX Association, Santa Clara, CA, Aug.
2019.

G. R. Santhanam, B. Holland, S. Kothari, and J. Mathews. Interactive
visualization toolbox to detect sophisticated android malware. In 2017
IEEE Symposium on Visualization for Cyber Security (VizSec), pp. 1-8,
2017. doi: 10.1109/VIZSEC.2017.8062197

O. Somarriba, U. Zurutuza, R. Uribeetxeberria, L. Delosieres, and
S. Nadjm-Tehrani. Detection and visualization of android malware behav-
ior. Journal of Electrical and Computer Engineering, 2016:1-17, 01 2016.
doi: 10.1155/2016/8034967

	Introduction
	Background
	Android Applications
	Android Features
	Feature Selection

	Related Work
	Android Feature Selection
	Android Application Visualization
	Android Features Visualization

	Data and Task Abstraction
	Android Application Datasets
	Feature Selection Metrics
	Derived Attributes
	Abstract Data
	Task Abstraction

	Solution
	Goal 1: Visualize feature maliciousness over time
	Goal 3: Accommodate for a very large feature space
	Goal 3: Visualize normalized frequency of features
	Goal 4: Show selected features for the 6 feature selection metrics
	Goal 5: Allow users to easily find features they are interested in

	Implementation
	Milestones
	Results
	Scenario

	Discussion and Future work
	Strengths
	Limitations
	Lessons learned
	Future work

	Conclusion

