
Visualizing Android Features Through Time:
Project Proposal

Michael W. Tegegn
ECE department at University of British Columbia, Canada

Email: mtegegn@ece.ubc.ca

Abstract: Intentionally left blank

1 Introduction

Android is comfortably the most popular mobile operat-
ing system in the world with around 70 percent of the market
share and close to 2.5 billion active users worldwide [5] .
The open-source software has been the favorite mobile oper-
ating system since early 2010’s for big mobile manufacturing
companies like Samsung and LG. Able to run on this system,
there are over 3 million android applications on Google Play
alone.

Sadly, malicious applications exist even on secure ap-
plication markets like Google Play itself. To detect these
malicious applications, several approaches have been pro-
posed including machine learning approaches. One effec-
tive machine learning approach is training a binary classi-
fier for benign and malware applications using features ex-
tracted by examining android APK files.[2, 6, 4] Since an-
droid features may change through time, machine learning
models that are based on APK features may lose robustness
for application data from different versions or development
years. To make full use of android features for malware de-
tection algorithms, I believe one needs to understand how
the android feature space has changed over time, including
information on the features added, the relationship between
certain features, trends in how the android feature space has
changed, and distinctive features for the benign and malware
classes. And to gain a deeper understanding of the android
feature space and its evolution through time, I propose visu-
alizing the kinds and quantities of android features over an
extended period.

I am only currently being exposed to this area as I have
only just started my studies as a Master’s student. Through
this project, I plan to acquire an insightful experience on an-
droid security. I am generally interested in safety and secu-
rity of Machine Learning Applications, and so I think this is
a great subway to be exposed to such research.

2 Related Work
Previous work have devised ways to use android features

for machine learning applications. The popular 2014 tool
DREBIN was one of the pioneers in this field.[2] DREBIN
was a static malware detection tool that extracted features
from the android application data and trained a Linear Sup-
port Vector Machine (SVM) based on these features. The
features were extracted by searching for the occurrence of
the strings corresponding to one of the eight feature families
they discussed. More of this is discussed in the Data and
Abstraction section. Their results were promising. DREBIN
was able to achieve comparable results to the then top of the
line commercial anti-viruses all.

Further research on this area suggested that adjusting the
feature weights for the linear support vector machine to be
bounded between some small interval aids in training a more
robust classifier. [6] The authors proved this by carefully
crafting malware applications to bypass DREBIN’s approach
of letting the model weights be determined completely by
the vanilla SVM. The authors proposed an algorithm (Sec-
SVM) that aims to eliminate the effect of a feature with high
weight in the final trained model. Their argument was, if the
classification was heavily dependent on a few features, then
simply adding or removing those features contributes signif-
icantly to the classification. Therefore, by restricting the fea-
ture weights to not exceed a certain threshold, we can miti-
gate the effect of the presence of a single feature on overall
classification of the application. This same paper also men-
tions how we can select 10,000 of the top features (features
with the highest weights) from the DREBIN implementation
without significantly impacting the accuracy of the model.

To further strengthen the robustness of such classifiers
under attach, Michael Cao et al. [4] proposed an approach
where more emphasis is given to features that are more com-
mon to malware applications than benign application. They
built on the simple fact that it is easy for malware applica-
tions to appear benign by adding ineffectual features more
commonly found in benign applications. Therefore, focus-
ing on features that are more common in benign applications
will hep the classifier to be more robust to such carefully
crafted attacks.

1



Some visualization approaches on android features in-
clude works by Hosseinkhani et al [8] who aimed to visualize
the permision component of android applications and Bacci
et al [3] visualized the dynamic trace of potentially malware
activity on android applications.

As far as visualizing the features themselves is con-
cerned, i.e. not the feature weights of the SVM models or
similarity between features, I am yet to find a good related
work to find my project up on. From what I have discovered
so far, the change in the number and type of features through
a full decade worth of android OS history has not been ex-
tensively studied. And I believe visualization of the feature
space through an extended period of time can prove to pro-
vide interesting insights for Machine Learning applications.

3 Data and Task Abstraction
3.1 Android Applications

I plan to collect real application data (APK files) from
AndroZoo dataset [1] that currently has more than 16 mil-
lion APKs registered. I have already applied for access to
the AndroZoo dataset which will grant me access to their
API enabling me to automate downloading multiple APK’s
per day. The applications found in the AndroZoo dataset are
a mix of both benign and malware applications and are all
free versions for obvious reasons. Using their API, the plan
is to collect at least 1,000 APK samples for both malware and
benign classes for each year starting from 2010 to 2021. The
problem with this approach is that it is difficult to precisely
tell when the applications were first developed. This is be-
cause any person can use an earlier version of an API to build
an android application because of backward compatibility in
Android OS. Hence, I found that the best metric to judge the
assembly time of the application is by using its submission
date on AndroZoo dataset. An alternative to this approach
would be to use the tool proposed by Li et al [7] to infer the
release date by looking at the usage of API’s. Nonetheless,
with a fast growing plethora of android application submis-
sions, the AndroZoo dataset roughly matches the application
development date to the submission date since it is highly
likely for android applications to be submitted to this dataset
once they are available on any market.

After the collection of the APK files, there is the task
of labelling them either benign or malware before construct-
ing visualizations. For this task, I plan to upload the files
to VirusTotal website that has more than 25 antiviruses that
check for malicious software. VirusTotal also has an API
that can be used to automate the process. If an android ap-
plication is labelled as malware by more 2 antiviruses in this
tool, I will flag them as malware. The applications will be
labelled as benign otherwise.

3.2 Extracting Features
After collecting the data, I will extract the features us-

ing DREBIN’s definitions. In DREBIN, there are 8 families
of android features. Table 1 is from Demontis et al [6] and
summarizes the 8 feature sets/families from DREBIN. Each

set can have thousands of features associated with it.

Fig. 1. Available feature sets

An android feature in the case of DREBIN is nothing
more than a functionality present in the android application.
The presence of the feature can be easily inferred from either
the DEX or Manifest files in the application bundle by simply
looking for the presence of a particular string. I will run a
script for each application to extract the features by searching
for these special strings and merge the features found in all
application to form a giant feature set. Below is 6 example
features that can be found in an android application. The first
three fall under the set S5 and the next three fall under set S4.

RestrictedApiList android.widget.VideoView.setVideoPath
RestrictedApiList android.location.LocationManager.isProviderEnabled
RestrictedApiList android.widget.VideoView.pause
IntentFilterList android.intent.action.ZC
IntentFilterList android.intent.action.U
IntentFilterList android.intent.action.Y

3.3 Features to Vectors
After the features are extracted, machine learning based

malware detectors will need to represent every application
as a feature vector with 0’s and 1’s for each feature. 1 for a
feature means the application contains that feature and 0 for
a feature means the application does not contain that feature.
However, for the purpose of visualization, I plan to treat all
applications as vectors of their available features. This means
that applications are expressed using vectors with discrete
data (feature string) but varying length.

4 Solution
4.1 Goal 1: Accommodate for a very large feature space

The aim of this study is visualizing DREBIN based fea-
tures starting from early 2010’s to help understand how much
android features have evolved over the years. However, the
sheer number of available features using the aforementioned

2



feature space make this task challenging. Collecting thou-
sands of android samples for each year since 2010 can eas-
ily increase the distinct features to be more than a 100,000.
Hence, my visualization should accommodate for such a
large feature count. There is also the added challenge of fea-
ture updates that will add bias to the visualization of older
vs newer features. The results upon successful completion
of this task will include the number of features available for
each class and each calendar year.

One visualization technique for this task is to represent
the number of features for each of the 10 feature sets using a
steam graph that spans from 2010 to the present. In figure 2,
the hue channel can be used to represent the 8 feature sets and
the length of the graph will represent the number of features
for each class.

Fig. 2. Stream graph for evolution of feature sets

4.2 Goal 2: Visualize feature drift
After labelling the application data as either benign or

malware, I plan to look for any feature drift/migration from
one class to another. Some of the questions that a successful
completion of this task could answer are the following. Do
some features that have historically been more common in
either benign or malware applications suddenly or gradually
start becoming more common in applications of the opposite
class? Are there certain features we can confidently say are
always more common in apps of one of the two classes? Is
there a time in android version history that the feature distri-
bution in either of these classes has drastically changed?

One visualization technique for this task will be to select
a handful of “important” features and construct a heat map as
in figure 3. The right labels can be used to represent features
and the bottom labels to represent the development years of
the applications. The heat map entry will encode the infor-
mation (percentage of malware apps containing this feature
– percentage of benign apps containing this feature).

Fig. 3. Heat map to represent potential feature drift

4.3 Goal 3: Look for associations between features and
malware families

Additional information about the applications can be
found in public datasets like RmvDroid and VirusTotal.
Grouping android applications into suitable families is a re-
search topic and there is no officially recognized distinction.
However, for the purpose of this study, I can use consistent
labels for malware applications and visualize the feature dis-
tributions for each application family. This task is more ap-
propriate for Malware applications since extensive studies
mainly focus on them and I can resort to using one of the
specified metrics to group my dataset of malware applica-
tions. Results for this section of the work should provide
insightful explanations on the presence of any correlations
between the subsets of features and malware families, i.e.
do some features exist more abundantly on specific malware
families?

One way to show this will be using stacked bars as in fig-
ure 4. The hue in the bars can represent the malware families
and a bar will be constructed for each interesting feature.

Fig. 4. Stacked bars for relationship between features and android
families

3



To construct many of these visualizations, I plan to use
the python library altair since I will be writing python scripts
for data collection and abstraction phase of this project. And
further tweaks to the vis techniques given above will happen
depending on the final data distribution.

5 Milestones

Fig. 5. Project milestones

References
[1] Kevin Allix et al. “AndroZoo: Collecting Millions of

Android Apps for the Research Community”. In: Pro-
ceedings of the 13th International Conference on Min-
ing Software Repositories. MSR ’16. Austin, Texas:
ACM, 2016, pp. 468–471. ISBN: 978-1-4503-4186-8.
DOI: 10.1145/2901739.2903508. URL: http:

/ / doi . acm . org / 10 . 1145 / 2901739 .
2903508.

[2] Daniel Arp et al. “DREBIN: Effective and Explain-
able Detection of Android Malware in Your Pocket.”
In: NDSS. The Internet Society, 2014. URL: http :
//dblp.uni- trier.de/db/conf/ndss/
ndss2014.html#ArpSHGR14.

[3] Alessandro Bacci et al. “VizMal: A Visualization
Tool for Analyzing the Behavior of Android Mal-
ware”. In: Jan. 2018, pp. 517–525. DOI: 10.5220/
0006665005170525.

[4] Michael Cao et al. “On Benign Features in Malware
Detection”. In: Proceedings of the 35th IEEE/ACM In-
ternational Conference on Automated Software Engi-
neering. ASE ’20. Virtual Event, Australia: Associa-
tion for Computing Machinery, 2020, pp. 1234–1238.
ISBN: 9781450367684. DOI: 10.1145/3324884.
3418926. URL: https://doi.org/10.1145/
3324884.3418926.

[5] David Curry. “Android Statistics (2021)”. In: Busi-
ness of apps (June 3, 2021). URL: https : / /
www.businessofapps.com/data/android-
statistics/ (visited on 10/21/2021).

[6] Ambra Demontis et al. Yes, Machine Learning Can Be
More Secure! A Case Study on Android Malware De-
tection. 2017. arXiv: 1704.08996 [cs.CR].

[7] Li Li, Tegawendé Bissyandé, and Jacques Klein.
“MoonlightBox: Mining Android API Histories for
Uncovering Release-Time Inconsistencies”. In: 2018
IEEE 29th International Symposium on Software Re-
liability Engineering (ISSRE). 2018, pp. 212–223. DOI:
10.1109/ISSRE.2018.00031.

[8] Mona Hosseinkhani Loorak, Philip W. L. Fong, and
M. Sheelagh T. Carpendale. “Papilio: Visualizing An-
droid Application Permissions”. In: Computer Graph-
ics Forum 33 (2014).

4


