

Visualizing Android Feature Maliciousness through time

Michael Tegegn

Content

- 1. Introduction and Motivation
 - a. Android
 - b. Android Malware Detection
- 2. Visualizing Android Features over time
 - a. Related Work
 - b. Dataset and Abstraction
 - c. Design Decisions
 - d. Demo
- 3. Limitations and Future work

Android

• Most widely used Mobile OS

• 12,000 new Android malware instances every day. unb

Android Malware Detection

- Aid in Feature Selection
 - Eg. Selecting features more common in malware applications can help boost robustness [1]

[1] "On Benign Features in Malware Detection" by Michael Cao et al, ASE, 2020

Sample Selection: Which samples to train on?

• We want to identify future malware

We can just train on all existing benign and malware samples

Why visualize android features through time?

• Identify features that can help detect future malware [2]

Related Work: Visualizations

1. Correlation Between Features

2. Model Performance through time

- Android Applications represented as a set of (DREBIN) features
 - Benign and Malware Android applications
 - Eg. app1: { feature1, feature3, feature5 } label: benign
- Feature selection metrics and their results
 - Features ranked according the feature selection metrics
 - Eg. Mutual info metric: {feature3, feature1, feature2}

Derived Attributes:

Maliciousness of Feature $x = \frac{Malicious Apps with x - Benign Apps with x}{Total Number of Apps with x}$

- -1 => x only in malware apps
- 1 => x only in benign apps

Normalized f req of Feature $x = \frac{Apps \text{ with Feature } x}{Total \text{ Number of } Apps}$ • 1 => All apps contain x • 0 => No apps contain x

Data Abstraction Summary

<u>Attribute</u>	<u>Kind</u>
Feature	Categorical
Feature Set / Feature Family	Categorical
App Development Year	Ordinal
Feature Maliciousness	Quantitative
Feature Normalized Frequency	Quantitative

Goal: Identify feature trends in android applications **Target Group**: Malware detection tool developers

Visualization Design: Encodings

- Feature Maliciousness over time using heatmap
 - y-axis: Feature x-axis: Development year
 - Maliciousness encoded by **Blue-Red Diverging Scale**

1	1	1	1	1
-1	-0.5	0	0.5	1

- Normalized frequency over time using bar charts
 - y-axis: Feature x-axis: Development year
 - Bar height: Normalized frequency of a feature

Visualization Design: View Manipulation

- **Requirement 1**: Accommodate for large number of features
 - Design Solution
 - Filter features based on feature set
 - Order features based on popularity, maliciousness, ...
 - Alter view using scrolling
- **Requirement 2**: Show selected features
 - Design solution
 - Show selection using dashed border lines

- **Requirement 3**: Display normalized frequency of a feature on demand
 - Design solution
 - Add side view bar chart upon selection

http://127.0.0.1:5500/index.html

Limitations and Future Work

Limitations:

Sampling bias in dataset
Eg. Drebin Dataset:

- Short time duration for the two datasets (VT: 4 years, DREBIN: 5 years)
- Still a large number of features (Scrolling required)

Future work:

- Hand select features and train models directly on the vis interface
- Extend for any domain that requires analysis of features for feature selection

Thank you! Questions?