
Visualizing Android Feature 
Maliciousness through time

Michael Tegegn

1



Content
1. Introduction and Motivation

a. Android
b. Android Malware Detection

2. Visualizing Android Features over time 
a. Related Work
b. Dataset and Abstraction
c. Design Decisions
d. Demo

3. Limitations and Future work

2



Android
● Most widely used Mobile OS 

● 12,000 new Android malware instances every day. unb

3

https://www.unb.ca/cic/datasets/andmal2020.html


Android Malware Detection
● Machine Learning Based Techniques perform well

4

Extract

Feature1
Feature2
Feature3
Feature4
….

Train

Training Samples
Model

[1] “On Benign Features in Malware Detection” by Michael Cao et al, ASE, 2020

Malware Benign

Why visualize android features?

● Aid in Feature Selection
○ Eg. Selecting features more common in malware applications can help boost robustness [1]



Sample Selection: Which samples to train on?
● We want to identify future malware

● We can just train on all existing benign and malware samples

5

Seen Samples Future Samples

[2] “TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time. by Pendlebury et al, USENIX, 2019

Why visualize android features through time?

● Identify features that can help detect future malware [2]



Related Work: Visualizations
1. Correlation Between Features

6

2. Model Performance through time



Data:
● Android Applications represented as a set of (DREBIN) features

○ Benign and Malware Android applications
■ Eg. app1: { feature1,  feature3,  feature5 }  label: benign

● Feature selection metrics and their results
○ Features ranked according the feature selection metrics

■ Eg. Mutual info metric: {feature3, feature1, feature2}

7

Derived Attributes:
● -1 =>  x only in malware apps
● 1 =>  x only in benign apps

● 1 =>  All apps contain x
● 0 =>  No apps contain x



Data Abstraction Summary
Attribute Kind

Feature Categorical

Feature Set / Feature Family Categorical

App Development Year Ordinal

Feature Maliciousness Quantitative

Feature Normalized Frequency Quantitative

     Goal: Identify feature trends in android applications
Target Group: Malware detection tool developers

8



Visualization Design: Encodings
● Feature Maliciousness over time using heatmap

○ y-axis: Feature  x-axis: Development year
○ Maliciousness encoded by Blue-Red Diverging Scale

9

● Normalized frequency over time using bar charts
○ y-axis: Feature  x-axis: Development year
○ Bar height: Normalized frequency of a feature



Visualization Design: View Manipulation
● Requirement 1: Accommodate for large number of features

○ Design Solution
■ Filter features based on feature set
■ Order features based on popularity, maliciousness, …
■ Alter view using scrolling

● Requirement 2: Show selected features
○ Design solution

■ Show selection using dashed border lines

● Requirement 3: Display normalized frequency of a feature on demand
○ Design solution

■ Add side view bar chart upon selection
10



Demo

http://127.0.0.1:5500/index.html

11

http://127.0.0.1:5500/index.html


Limitations and Future Work
Limitations:

● Sampling bias in dataset
○ Eg. Drebin Dataset:

● Short time duration for the two datasets (VT: 4 years, DREBIN: 5 years)
● Still a large number of features (Scrolling required)

Future work:

● Hand select features and train models directly on the vis interface
● Extend for any domain that requires analysis of features for feature selection

12



Thank you!
Questions?

13


