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Android
● Most widely used Mobile OS 

● 12,000 new Android malware instances every day. unb
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https://www.unb.ca/cic/datasets/andmal2020.html


Android Malware Detection
● Machine Learning Based Techniques perform well
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[1] “On Benign Features in Malware Detection” by Michael Cao et al, ASE, 2020

Malware Benign

Why visualize android features?

● Aid in Feature Selection
○ Eg. Selecting features more common in malware applications can help boost robustness [1]



Sample Selection: Which samples to train on?
● We want to identify future malware

● We can just train on all existing benign and malware samples
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Seen Samples Future Samples

[2] “TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time. by Pendlebury et al, USENIX, 2019

Why visualize android features through time?

● Identify features that can help detect future malware [2]



Related Work: Visualizations
1. Correlation Between Features
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2. Model Performance through time



Data:
● Android Applications represented as a set of (DREBIN) features

○ Benign and Malware Android applications
■ Eg. app1: { feature1,  feature3,  feature5 }  label: benign

● Feature selection metrics and their results
○ Features ranked according the feature selection metrics

■ Eg. Mutual info metric: {feature3, feature1, feature2}
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Derived Attributes:
● -1 =>  x only in malware apps
● 1 =>  x only in benign apps

● 1 =>  All apps contain x
● 0 =>  No apps contain x



Data Abstraction Summary
Attribute Kind

Feature Categorical

Feature Set / Feature Family Categorical

App Development Year Ordinal

Feature Maliciousness Quantitative

Feature Normalized Frequency Quantitative

     Goal: Identify feature trends in android applications
Target Group: Malware detection tool developers
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Visualization Design: Encodings
● Feature Maliciousness over time using heatmap

○ y-axis: Feature  x-axis: Development year
○ Maliciousness encoded by Blue-Red Diverging Scale
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● Normalized frequency over time using bar charts
○ y-axis: Feature  x-axis: Development year
○ Bar height: Normalized frequency of a feature



Visualization Design: View Manipulation
● Requirement 1: Accommodate for large number of features

○ Design Solution
■ Filter features based on feature set
■ Order features based on popularity, maliciousness, …
■ Alter view using scrolling

● Requirement 2: Show selected features
○ Design solution

■ Show selection using dashed border lines

● Requirement 3: Display normalized frequency of a feature on demand
○ Design solution

■ Add side view bar chart upon selection
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Demo

http://127.0.0.1:5500/index.html
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http://127.0.0.1:5500/index.html


Limitations and Future Work
Limitations:

● Sampling bias in dataset
○ Eg. Drebin Dataset:

● Short time duration for the two datasets (VT: 4 years, DREBIN: 5 years)
● Still a large number of features (Scrolling required)

Future work:

● Hand select features and train models directly on the vis interface
● Extend for any domain that requires analysis of features for feature selection
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Thank you!
Questions?
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