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1. Introduction

CPSC 310 is an undergraduate software engineering course offered
at UBC Vancouver. The course involves a term-long project con-
sisting of four checkpoints each spanning a period of 2-3 weeks.
The project involves teamwork in which the student collaborates
with one other (occasionally two) student(s) through GitHub us-
ing git version control. AutoTest is an evaluation tool used in this
course, in which a suite of private tests are invoked against the
team’s solution, and feedback in the form of test failure overviews
are reported back. Throughout the course of the project, students
access resources including labs, office hours, and Piazza, where
they seek help from the course staff. CPSC 310 is a large course,
with typically more than 300 registered students, and this makes it
extremely difficult for the course staff to determine when and why
a student is struggling in the course. We define course “friction”
loosely as any identifier of student struggles: some examples being
ineffective resource allocation, non-standard use of version con-
trol, and prolonged period of inactivity. Recognizing these frictions
are crucial for the course staff as it makes possible early interven-
tion. Course friction arise from many causes, and previous works
have extracted and joined data from the various tools the course
employs. For example, data set taken from 2020 Winter Term 2
offering contains 25,488 AutoTest results, 5,801 Piazza contribu-
tions, and 2,366 office hour visits, joined with each student. With
existing data, one way to solve this problem would be to manually
inspect each table row and try to identify suspicious patterns. But
tabular representations are oftentimes inefficient for searching pat-
terns over large data sets, and thus, CPSC 310 will benefit from a
more effective visualization of their course data.

1.1 Personal Expertise

We chose the domain of course friction in part because all of us
are currently TAs for some undergraduate software engineering
courses at UBC (CPSC 310, 319, 410). We are often faced with the
difficulty of identifying when a student is struggling, which delays
timely intervention and has repercussions to overall effectiveness
of learning. Most undergraduate level software engineering courses
employ some sort of source code management, autograding, Q&A
platform, from which we can derive identifiers of friction. In partic-
ular, CPSC 310’s existing datasets are especially familiar to some
of us as we have been working with them previously. This makes
it an ideal starting point for a more generalized visualization tool
on course friction. Finally, from a software engineering perspec-

tive, understanding the pitfalls in collaborative software engineer-
ing tasks aligns with our interest as well.

2. Related Work
2.1 Computer Science Education

There is a prevalent belief in CS education research that grades
in our courses are bimodal, with some population of “strugglers”
and others who do well. In past work this has been explained as
a “geek gene”, causing some students to be predisposed to better
outcomes in Computer Science courses [1]. Robins introduced the
concept of “learning edge momentum” which posits that the reason
CS1 grades appear the way they do is due to the tight linking of
knowledge and how it builds on itself [11]. If a student falls behind
the impact will compound itself quickly, which they suggest is
unique among fields of study. Patitsas et al find the problem space
is more complex [10]. They evaluated many course distributions
at UBC CPSC and found that very few are actually bimodal. This
indicates that there are not necessarily two separable populations
of students but instead a single population that undergo struggles in
diverse ways.

Even if we can not split students into two populations based
on outcomes, there is value in understanding how and why stu-
dents struggle. Various authors have used different features to cre-
ate models for identifying these students. In this paper we call
these models “red flags”. In “Exploring the Value of Different
Data Sources for Predicting Student Performance in Multiple CS
Courses” the authors use grade information to predict a final course
outcome [9]. They find that prerequisite grade or clicker grade
strongly predicts final grade. And in “In Situ Identification of Stu-
dent Self-Regulated Learning Struggles in Programming Assign-
ments” they use measures of stagnation in grade to indicate strug-
gle on an assignment [2]. Furthermore, Estey et al develop a model
using changes in programming behaviour to identify students in
need of support [4]. They find that they can identify students who
require support in the first few weeks or term and target outreach to
them. Neural networks have also been explored in finding students
in need of assistance. One paper uses student grades and the num-
ber of submissions as features in their model [3]]. Together these au-
thors have conceptualized some feature (or “red flag”) and demon-
strated its relationship to student outcomes. In this paper we con-
tribute a tool that allows quick discovery and validation of features
like these in a general purpose way.

2.2 Classroom dashboard visualizations

We build a dashboard style visualisation for representing student
’red flags” and understanding their relationship to outcomes. Dash-



boards are a common tool for understanding learner behaviour. For
example, Kia and their collaborators created a dashboard for visu-
alising learner attributes in a MOOC class on edX [8]. This dash-
board displays attributes such as attendance, gender, and age as bar
charts. Ginda and their collaborators also investigate MOOC:s, cre-
ating conceptual content hierarchies and “learner path” visualisa-
tions that show the steps a learner takes through a class [6]]. These
tools demonstrate the utility of visualisations for educators to un-
derstand the experience of their students throughout a course. In
this paper, instead of visualising learner attributes directly we vi-
sualise learners in terms of cohorts which are defined by models
created by the visualisation user.

2.3 Visualization techniques and idioms

In “Quality based guidance for exploratory dimensionality reduc-
tion” the authors create a general tool and process for reducing a
high dimensionality dataset into a single attribute one, allowing a
user to pull out interesting elements for further inspection [3]. A
user does this by selecting interesting variables and then inspecting
their correlations. The problem of identifying struggling students
also maps onto dimensionality reduction. However, in our work we
are concerned about the correlation between each potential red flag
and the true struggling students. This simplifies the problem con-
siderably because we don’t care about correlation between every
pair of attributes. We also distinguish our work in that we identify
correlations between membership in the set of struggling students
instead of between quantitative attributes themselves. LineUp in-
troduces a method for visualising multidimensional data in a tab-
ular format. They facilitate the task of ranking based on a user-
specified model [7]. LineUp also allows for the comparison of mul-
tiple models by displaying them side by side. This idiom is essen-
tial to identifying struggling students because users of our tool need
to compare their candidate models to decide which is most useful.
However, LineUp stops somewhat short of the idiom we need as
they don’t incorporate temporal data. We need a user to be able
to understand how their model for identifying struggling students
varies in accuracy and sensitivity over time. LineUp does not treat
attributes as time-varying.

We also use the idiom of circle packing where students are rep-
resented by smaller circles nested in larger circles representing their
groups. Circle packing was previously described in " Visualization
of Large Hierarchical Data by Circle Packing” [12]]. The authors of
this paper use circle packing to represent tree data where multiple
levels of nesting exist. In our use of the idiom, however, we only
ever pack exactly one level of nesting. However, we do make use of
similar techniques to layout the nested circles within the containing
circle.

3. Data Abstraction

The given data abstraction consists of a series of tables representing
various aspects of our dataset. We then develop a new abstraction
which we expose to users of the visualization.

3.1 Input table abstraction

The input data is a series of tables. Additional information about

attributes for each table is in [Appendix A]

3.1.1 Table autotest_results

Throughout the project, students make incremental submissions
of their code by committing and pushing to branches on their git
repositories. Each team’s repository consists of a single master
branch and a number of development branches which are often-
times per member or per feature. Each project checkpoint has a
suite of associated tests that AutoTest runs on each push to these

git branches. Students can see the result of the AutoTest run on a
specific commit by explicitly requesting AutoBotD AutoTest result
requests are rate-limited across branches, for example, one request
on any branch per six hours per student.

Autotest results are identified by their feedback_id which is a
unique identifier for each result entry. They also have several at-
tributes. They have categorical attributes representing the deliver-
able the result is for, the branch the result is from, the user who re-
quested the feedback, and the user who committed the code change.
They have ordered attributes for the score, the current visible score,
time of the request and time feedback was given.

3.1.2 Table contributions

Piazza is the most active resource where students seek and receive
assistance from not only the course staff, but also other fellow
CPSC 310 students. Students can create posts which can be either
a note or an answer-wanted question, categorizing them using tags.
A Piazza contribution includes every action from creating a post,
replying to a post, creating a new followup to an existing post, etc,
all of which are recorded with timestamps in this table.

Piazza contributions are identified by their cid which is a unique
identifier for each contribution entry. They also have several at-
tributes. They have categorical attributes representing whether or
not the contribution was made anonymously, the kind of contribu-
tion, whether the post was tagged as “project”, the user who made
the contribution, and the post where the contribution was made.
There is also a single ordered attribute, the time at which the con-
tribution was made.

3.1.3 Table queue_visits

Aside from Piazza, TA-held office hours are also one resource stu-
dents use for issues that benefit from more synchronous, one-to-one
interaction. Access to TA assistance in office hours are regulated by
Queue@UBC, an online queue service simulating “lining-up” for
help. Each student seeking assistance would enqueue and wait for a
notification for their turn. A TA can view all the students currently
on the queue, and would pick one to “start answering” thereby
dequeuing them. Upon addressing the student’s question, the TA
would “finish answering”, recording answer_finish. Note that con-
trary to a conventional queue, the TA need not follow FIFO order
strictly; this is to prioritize help for the students requiring more im-
mediate assistance.

Queue visits are identified by their qid which is a unique iden-
tifier for each queue entry. They also have several attributes. These
include the user who asked the question, and the TA who answered
it. Ordered attributes are the time of enqueue, dequeue, and the time
at which the TA started and finished answering the question.

3.1.4 Table users

A deidentified user hash, anon_id, corresponds to each student
and TA. Users have a categorical attribute representing whether or
not the user is a withdrawn student. They have a single ordered
attribute, the time at which their first lab of the term started.

3.2 Revised data abstraction

We want users to be able to write queries over our data to answer
questions about students. We find that the complexity of joining
multiple tables and filter operations is not needed for our visualiza-
tion. Therefore, we refine the existing abstraction to a single table
for ”students” which we generate automatically. This table starts

! Autobot is an autograding system built at UBC, students request Autobot
by commenting on a Github commit, but we run tests regardless of whether
they request it.



as a filtered version of the “users” table to remove course staff and
then is populated with data from the other tables.

Students are identified by their anon_id which is a deidentified
hash. They have the same attributes as the users table, plus addi-
tional attributes which are generated synthetically to facilitate user
queries

* num_visits - count of visits to Office Hours so far
* num_contributions - count of Piazza contributions so far
* score - current project score

e ...and additional attributes we devise

4. Task Abstraction

‘We want to build a visualization dashboard that will help instructors
and TAs detect struggling students early on in a course (CPSC
310). To do so, they can use certain indicators correlated with some
outcome, for example low final grades, as red flags to identify the
students. These indicators may be some patterns dependent on the
following:

* Office hour visits
* Piazza contributions

* Auto-grading results

If a student happens to fulfill a red flag, then some intervention
may be helpful in keeping the student on track. Although these red
flags can be any arbitrary condition, we can also do some prior
analysis using previous years data to discover meaningful red flags.
To simulate making a prediction, there should also be a way to
restrict available data to a certain time-frame. We will also consider
calculating some statistics that may describe how well the indicator
predicts the outcome.

In order to accomplish this goal we introduce the following
high-level tasks

* T1: Discover indicators that identify students who are strug-
gling.

* T2: Evaluate and compare candidate indicators based on their
sensitivity, accuracy, stability, and speed (at identifying strug-
gling students).

5. Solution

Our solution allows instructors and TAs to perform rapid verifica-
tion on their hypothesized indicators of student struggles. It should
provide an intuitive means to visually confirm a certain pattern in
student data as a potential red flag leading to some unfavourable
outcome, thereby enabling course staff to step in at an earlier stage.
The instructors and TAs can use pre-proposed indicators of student
friction from previous studies to verify against their own course
dataset, but the visualization should also guide them to explore their
dataset and discover more red flags.
‘We propose a solution consisting of two main idioms

5.1 Indicators Board (Circular Packing)

An example of this view is shown in[Figure 1] Outcome of interest
is represented as a central circle, whee each indicator being verified
is positioned as circles around the outcome. Students identified by
each indicator (ie. belonging to the cluster described by the indi-
cator) are represented as sub-circles and packed inside. The size
of an indicator circle encodes the number of students contained in
each cluster. In addition, each indicator circle is colour-coded with
linearly varying saturation in the red hue, encoding its similarity to
the outcome circle. Similarity is defined by member containment:

the indicator cluster contains a student also present in the Outcome
cluster. This value is be binned into several saturation ranges to
avoid the problem of indistinguishable colour encoding. Interac-
tion in the collapsible side panel allows configuring the outcome
and identifiers to be verified. Other interactions include zooming
into a single cluster, dragging (useful when many indicators are si-
multaneously visualized), and potentially hovering to display more
detailed information about the cluster. The user can also interact
with the time slider to step through the evolution of each cluster in
a specified time interval.

5.2 Table

An example of this view is shown in[Figure 2] The user can navigate
to a per indicator table visualization by selecting the indicator cir-
cle in the circle packing of visualization 1. Students in the selected
indicator cluster are on the vertical axis and the different indicators
on the horizontal axis. (NOTE: these indicators need not be part
of what was selected in visualization 1). In each cell is the derived
value of student data based on the indicator. Rows with students
also contained in the outcome cluster should be colour-coded with
red colour. Interactions include sorting on the indicator columns
and filtering on the rows. Further details of this visualization is cur-
rently TBD, but the goal is providing opportunities for explorations
to identify identifiers other than the set from visualization 1.

5.3 Handling complexity

Our solution uses common techniques in order to handle complex-
ity. These include navigation, juxtaposition, and dimensionality re-
duction.

5.3.1 Views and Manipulation

We implement a time slider than will select a time range for the
data. As the slider shifts, marks representing data time-stamped
outside of this range will disappear from the vis, and likewise as the
timerange expands, marks will appear. These animations may be
considered a Change manipulation, and selecting a time range can
be a Navigation to reduce the number of visible items or attributes.

5.3.2 Juxtapose

Using different circles representing different indicators, we can also
juxtapose multiple views, which will allow users to compare the
predictive powers of these indicators. The set of marks contained
in each circle may be subsets or disjoint sets from each other, but
each view should share the same encoding.

5.3.3 Dimensionality reduction

We consider our tasks T1 and T2 as a simple version of a dimen-
sionaility reduction problem. Our dataset contains a myriad of di-
mensions about each student which altogether may have some de-
gree of predictive power over their final outcome. We allow a vis
user to select some of these dimensions to generate a new synthetic
dimension and then explore how well this dimension partitions stu-
dents. Our reductions are much simpler than literature as our syn-
thetic dimensions are always binary, either a student is in them or
not, they don’t have a magnitude.

5.4 Scenario

Imagine the user of this course friction explorer as an instructor
for CPSC 310. It is currently mid-term and the students have just
passed their deadline for submitting code for checkpoint 1 of the
project, and AutoTest executed test suites against each of their
codebase to give an interim checkpoint grade. It is a good time
to evaluate how the students are progressing in the course, and if
any of them are showing signs of struggle. The user would want
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Figure 1: Circular packing view of 5 possible indicators of a failing final grade.

to identify struggling students and reach out to them earlier so that
they can make improvements toward the end of the term. As in
previous studies shown there are several factors that often are the
causes of friction:

* Starting course assignment late
* Performing suboptimally on one of the earlier assignment

* Seeking assistance repeatedly in a short span of time

Now, if these indicators were verified to also be applicable to
CPSC 310, then a bulk of the user’s work is complete. The rest of
the work involves identifying students with these particular char-
acteristics, which is comparably straightforward. The user would
turn to Course Friction Explorer for performing the work of fric-
tion verification against datasets from the most recent course offer-
ing: 2019 Winter Term. The user is most likely interested in know-
ing whether these proposed friction indicators can actually identify
students that have failed the course in that term. So, in the circular
packing visualization, the user can set the ”"Outcome” circle to be
”Students who received final grades less than 50%”. Then, the user
can add each one of the aforementioned characteristics as an indi-
cator circle. These circles are, “Students who started checkpoint 1
after Oct 1. 2019”, ”Students who received AutoTest results of less
than 50% on checkpoint 17, and ”Students who create more than
5 piazza posts daily on average”. After all the interested indicators
are added, the visualization displays a central red circle correspond-

ing to the Outcome cluster, and three surrounding Indicator circles
of different sizes.

In particular, the circle corresponding to the indicator ”Students
who received AutoTest results of less than 50% on checkpoint 1”
is coloured with saturated red, very much similar to the colour of
the Outcome circle. The user is able to click into the particular
indicator circle to inspect the member students. The user is able
to perform the same verification on datasets from multiple different
past offerings, all leading to this convergent result.

Learning from this verification, the user can make a preemptive
move of reaching out to the students from the current term whose
checkpoint 1 AutoTest result reported a failing grade.

5.5 Implementation Approach

We implement Course Friction Explorer as a web application. We
use a backend written in PythonEIand using FastAPI[’| The backend
assumes responsibility for loading and processing the input dataset.
The dataset is then made available for querying using a DSL we
designed over a REST endpoint. This allows us to perform the
majority of the analysis using Python libraries which we are more
familiar with.

2 https://www.python.org/
3 https://fastapi.tiangolo.com/
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The backend endpoints are used by our React El and d3.jsE|
frontend.

5.5.1 Loading dataset for querying

We load the datasets which are stored in a SQLite database into
a memory representation which exposes a time varying interface.
This means that the frontend can provide arbitrary timestamps and
the backend can sample attributes at that time. The process of
loading datasets also maps from the input data abstraction to our

newl” ”] l ] I

5.5.2 DSL: Writing queries

As part of our backend, we have designed a domain-specific lan-
guage (DSL) (see[Appendix B) to help process different queries in
our vis tool. Interacting with the front-end interface would translate
to constructing a query in our DSL in the backend, and our vis tool
will evaluate this query, producing the desired output. This DSL
should be able to express all possible interactions with our tool.
Though the DSL will still morph as we decide on the possible user
interactions with the vis, we have a parser that will construct an
abstract syntax tree from any query written in this DSL. We might

4 https://reactjs.org/
5 https://d3js.org/

also allow the vis user to directly write their queries in our DSL in
addition to using the graphical interface.

5.5.3 Frontend

Our React frontend makes use of a number of libraries to help ex-
pedite development. In particular, we use React components from
Materials Ul applying customized CSS via styled components. Re-
dux is the backbone for our frontend state management, giving all
our individual components access to a consistent global state to
which they can adapt their views on. The overall structure of the
frontend is depicted in Figure 3.

The service layer is responsible for communicating with our

backend using REST API queries: the QueryService and StudentService

makes request to POST /query and GET /students/id end-
points surfaced by the backend server respectively.

The state management layer lie in between our service layer
and the frontend React components. We choose to offload state re-
trieval and update logic from the individual components into this
state layer so to ensure states are accessed and modified in con-
sist way by all components and to minimize code duplication. Re-
dux is used heavily for this purpose. We have defined a global re-
dux store, consisting of multiple slices (subsets of the global state
accessible as a single unit from frontend components). For exam-
ple, the indicatorsSlice maintains the current working set of
indicators configured by the user, and surfaces the addIndicator,
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Figure 3: Interaction between frontend services, states, and compo-

nents

editIndicator, removeIndicator, and queryAllIndicators
as common access methods callable from all frontend components
as needed.

Finally, the React components serve as our presentation layer.
Our visualization dashboard is broken down into two major page
components: IndicatorsBoard and IndicatorTable compo-
nents. Each composes smaller sub-components like the Sidebar,
TimeSlider, IndicatorEditorDialog. Despite the many com-
ponents accessing and modifying shared state, our components re-
main moderately decoupled from each other, thanks to the state
management layer moderating state accesses. Integrating React
with d3 came with some complexity, as both attempts to assume full
control of the DOMs in view. In order to ensure they work in com-
bination, we need to define a clear separation in ways they can per-
form DOM manipulation. We wish to utilize d3’s strong set of data
manipulation and visualization methods, including animation and
transitions. On the other hand, React’s ease in receiving user input
events (eg. zoom, pan, click) and compatibility with our state layer
are crucial. Therefore, our approach involves using React compo-
nent as a wrapper around each chart DOM manipulated entirely by
d3. For example, our circular packing chart in the Indicators Board
has a wrapper CircularPacking component which renders a sin-
gle DOM node <vis-circular-packing>. The component feeds
all data needed by d3 to manipulate <vis-circular-packing>
to properly compute and visualize the chart. Upon updates from
the state layer and input events from user, it is CircularPacking
component’s responsibility to trigger appropriate d3 methods to up-
date the chart with new data. We have found this architecture gives
us the benefits from both libraries with minimal conflicts.

6. Milestones and Schedule

[Table T]displays the proposed development schedule of the Course
Friction Explorer from the initial planning to writing and submit-
ting the final paper. We are estimating a total of 81 person-hours on
task, with the main hours spent at implementing the Course Fric-
tion Explorer followed by writing the paper. However, estimating
and planning person hours on task tends to be very difficult and
error-prone. Therefore, we will be iteratively revising the allocation
of hours, to confirm their accuracy or adapt where needed. After re-
vising the deadline for the backend of the course friction
explorer got pushed back due to the fact that the development of the
backend and frontend started simultaneously. Moreover, the current
status of each task and actual hours spend on completed task is dis-

played in[Table 1} [Table 2|and[Table 3|provide a detailed breakdown
of the tasks including the responsible team members for each task,

estimated workload, actual hours spend on each task and the status
of each task. The estimated workload is equally divided among the
four team members.

7. Discussion
This section is left blank in the update.



Task Due date (Total/Per | Actual hours | Description Status
person) spent
Pitch Sep. 29 8/2 8 Create content and rehearse pitch Complete
Proposal Oct. 21 28/9 28 Discuss the project, create illustrations and write | Complete
the project proposal
Learning and under- | Oct. 28 40/10 36 Read the documentations and examples. Learn | Complete
standing the tools how to use the tools and how they can interact.
-d3.js Oct. 24 16/4 16 Complete
- Fast API Oct. 26 12/3 8 Complete
- Python Oct. 28 12/3 12 Complete
Project Update I Nov. 16 12/3 16 Prepare and provide updated paper for Peer Re- | Complete
views
Project Update 11 Nov. 24 16/4 Prepare for the Post-Update Meeting and demon- | To do
strate the prototype
Implementation Dec. 6 160/40 Implement and complete the Course Friction Ex- | In
plorer progress
- Backend: Setup, Data, | Nov. 26 60/15 Setup the environment, clean and work with the | In
Configs, Querying, DSL data in the backend, do the configs and create | progress
queries.
- Frontend: Circular | Nov. 26 60/15 Implement the frontend by i.a. creating circular | In
packing, Table packing and table models. progress
- Analysis Dec, 6 40/10 Generating additional properties people might | To do
use
Draft of the final paper Dec. 8 20/5 Write draft of the final paper To do
Presentation Dec. 15 16/4 Prepare slides for the final presentation and talk- | To do
ing points
Final paper Dec. 17 24/6 Finish the paper and include final changes and | To do
conclusion

Table 1: Overview of project milestones and person hours allocated to each

Task Assignees (Total Hr. / | Actual hours | Status

Per person) spent
Environment setup Marie Salomon, ToTo Tokaeo 6/3 5 Complete
Clean and load the data Noa Heyl 6 In progress
Configs Shizuko Akamoto 3 3 Complete
DSL Features Noa Heyl, ToTo Tokaeo 12/6 12 Complete
EBNF and parsing ToTo Tokaeo 18 In progress
Queries Noa Heyl 15 In progress

Table 2: Breakdown of project tasks for the backend of our project

Task Assignees (Total Hr. / | Actual hours | Status

Per person) spent
Environment setup Shizuko Akamoto, Marie Salomon 4/2 4 Complete
Redux integration Shizuko Akamoto 3 3 Completed
Circular Packing Marie Salomon 15 In progress
Time slider Shizuko Akamoto 11 In progress
Table models Shizuko Akamoto, Marie Salomon 20/10 In progress
Additional visualizations Shizuko Akamoto, Marie Salomon 6/3 In progress

Table 3: Breakdown of project tasks for the frontend of our project
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A.
Input dataset attributes
A.1 Table autotest_results
A.1.1 Categorical attributes
* deliv - Checkpoint number
4 categories (example: "c0")
* ref - Git branch AutoTest was called on
= 1665 categories (example: "ref/tags/c2-rc5")
* is_master - True if ref is the master branch
= 2 categories (example: 1)
* feedback_requester - Deidentified user hash of the requester

» 409 categories
(example: " j+TyZUe34/c1mZOH9tppky9C. . ."E])

* committer - Deidentified user hash of the committer

= 409 categories
(example: "F+CFt8v90oVAaHZppCNKYTSN. .. ")

A.1.2 Ordered attributes
* score - Test score of this AutoTest run
= Ranges from 0.00 to 100.00 (example: 100.00)
* visible_score - Test score currently available to the student
= Ranges from 0.00 to 100.00 (example: 90.00)
* request_time - Timestamp of when a student requests the result

= Ranges from 1610400675825 to 1622674908773 (example:
1610401163054)

* feedback_time - Timestamp of when result is returned

= Ranges from 1610400675825 to 1619628202579 (example:
1610521081669)

A.2 Table contributions
A.2.1 Categorical attributes

* is_anonymous - True if post is created by anonymous contribu-
tor

= 2 categories (example: 0)

* kind - Contribution kind
= 12 categories (example: "followup")

* is_project - True if contribution is tagged as project
» 2 categories (example: 1)

* anon_id - De-identified id of the contributor

= 409 categories
(example: "07e7yyUGH4zoF+i5UF3PHId. . . ")

* post_id - Unique identifier of the post the contribution was on

= 1436 categories
(example: "Ks43Y68znhtzXws8zNnDG. . .")

A.2.2  Ordered attributes
* created_at - Timestamp of contribution

= Ranges from 1610149993000 to 1620093785000 (example:
1619632354000)

6 Identifier hashes have been truncated to save line space in this paper.

A.3 Table queue._visits
A.3.1 Categorical attributes
* anon.id - Deidentified identifier of student asking question

= 409 categories
(example: "DjN2/LSrZHkxfxAk/ka8gIigB6...")

* answerer_id - Deidentified identifier of TA answering question
= 27 categories
(example: "Nxw7gaFw+d2vOmoktJ1dGKzd4Ix2...")
A.3.2 Ordered attributes
* enqueue - Timestamp of enqueue

= Ranges from 1600386235000 to 1618015298000 (example:
1618005226000)

* dequeue - Timestamp of dequeue

= Ranges from 1600386253000 to 1619307862000 (example:
1619307843000)

* answer_start - Timestamp of when the TA starts answering

= Ranges from 1600386239000 to 1618013723000 (example:
1618008486000)

* answer_finish - Timestamp of when the TA finishing answering
= Ranges from 1600386239000 to 1618016558000 (example:
1618004632000)
A.4 Table users
A.4.1 Categorical attributes
* withdrawn - True if the user withdrew from the course

2 categories (example: 1)

A.4.2 Ordered attributes

* first_lab_time - Timestamp of the user’s first lab. Null if user is
aTA

= Ranges from 1610384400000 to 1610751600000 (example:
1610751600000)



B.
DSL Grammar

query : filter;
filter : logic | binary | time_op;

logic : ’(’filter (’AND’|’0R’) filter’)’ | ’(’’NOT’> filter’)’;
time_op : (’BEFORE’|’AFTER’) time | ’BETWEEN’ time time;
binary : ’(’comparable (’>’|’<’|’<=’|’>=’|’1=’|’==’) comparable’)’;

comparable : number | time | string;
number : Number | arithmetic | granularity_result | student_attribute;
granularity_result : (’daily’|’weekly’|’monthly’|’final’|’sofar’)
’ (?student_attribute’)’;
arithmetic : ’(’number (’+’|’-?[’%’|’/’) number’)’;
string : student_attribute | String;
time : time_lit | student_attribute;
student_attribute : ’student.’attribute;
attribute : String;
time_lit : ’time’ ’(’ String ’)’;

Number : [0-9]+;
String : [a-zA-Z0-9_\-]+;
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