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Abstract
In UBC’s upper-year undergraduate software engineering course
CPSC 310 students work on a term-long project. CPSC 310 is
a large course, with typically more than 300 registered students,
which makes it extremely difficult for the course staff to determine
when and why a student is struggling in the course. There could be
multiple different factors to why a student is falling behind and po-
tentially failing the course. Possible indicators for CPSC 310 staff
to identify a struggling student could be a change in the program-
ming behavior or usage of the Q and A platform. Although the
staff could manually go through this data, it would require a large
amount of time. We present Course Friction Explorer, an interactive
visualization dashboard that leverages a suite of visualizations id-
ioms and techniques to simplify and accelerate the exploration and
understanding of CPSC 310 data collected. With our tool, the staff
can determine the causes of student struggle in the course by in-
teractively examining the data and constructing indicators for com-
parison.

1. Introduction
Identifying struggling students is a constant interest and challenge
for course staff to ensure course quality. Struggling students, if
unattended, undermine course quality as they are blocked from
making effective progress in learning. Despite the criticality of this
task, course staff often find it difficult to detect when a student is
struggling, which delays timely intervention and brings negative
repercussions to overall course quality. The issue is especially real
for courses with large class sizes or those with a limited number of
fine-grained assessments to gauge students’ progress.

The software engineering course CPSC 310 at UBC Vancouver
fits both of these properties. Each CPSC 310 offering typically has
over 300 students enrolled, and its main evaluation method is a sin-
gle term-long project consisting of four checkpoints, each spanning
a period of 2-3 weeks. At each checkpoint, AutoTest, an automatic
test runner, invokes a set of private tests against each student’s so-
lution code, giving feedback in the form of a test failure report.
The AutoTest feedback, although explicitly indicating struggles, is
too infrequent for achieving timely intervention. Throughout the
course of the project, students have access to resources like labs,
office hours, and Piazza, where they can explicitly seek help from
the course staff. These resources are also important grounds for the
course staff to identify and reach out to struggling students. But in
reality, due to the large size of the classroom, it is impossible for
the course staff to reach out to every potentially struggling student.

Thus, explicit signs of struggle, although obvious, are most often
not effective.

We developed Course Friction Explorer with the goal of facil-
itating identification of strugglers in a course like CPSC 310. It is
a visualization dashboard, where a course staff can discover and
compare many different indirect signs of student struggles, more
useful for making early intervention than the explicit signs. We
claim that Course Friction Explorer makes three major contribu-
tions:

1. We define 18 different derived student attributes from our orig-
inal dataset consisting of multiple tables, thereby forming an
abstraction over the raw tables. This frees our users from hav-
ing to make reasoning about data across tables.

2. We design and implement Friction DSL, a domain-specific lan-
guage used by our user to express an indicator using combina-
tions of aforementioned derived attributes.

3. We provide a dashboard consisting of multiple synced visual-
izations, including histograms, node-link graphs, and stacked
bar charts. The dashboard offers our users an overall context of
their classroom in the Overview page, as well as an intuitive
way of comparing different indicators of struggle against each
other in the Indicators Board page. In all our visualizations, our
users can change the views over time, to discover patterns over
the entire progression of their course.

The rest of this paper is organized as follows. Section 2 discusses
some of the existing work done, for the domain of classroom data
visualization, as well as some of the concrete visualization idioms
related to our solution. We then introduce our data abstraction in
Section 3, followed by task abstraction in Section 4. Section 5 and
6 together present our visualization solution for the data and tasks
we described, and details of our implementation. We discuss the
results and findings from our solution in Section 7, and potential
future works in Section 8. Finally we conclude in Section 9.

2. Related Work
2.1 Computer Science Education
There is a prevalent belief in CS education research that grades
in our courses are bimodal, with some population of “strugglers”
and others who do well. In past work this has been explained as
a “geek gene”, causing some students to be predisposed to better
outcomes in Computer Science courses [1]. Robins introduced the
concept of “learning edge momentum” which posits that the reason



CS1 grades appear the way they do is due to the tight linking of
knowledge and how it builds on itself [11]. If a student falls behind
the impact will compound itself quickly, which they suggest is
unique among fields of study. Patitsas et al find the problem space
is more complex [10]. They evaluated many course distributions
at UBC CPSC and found that very few are actually bimodal. This
indicates that there are not necessarily two separable populations
of students but instead a single population that undergoes struggles
in diverse ways.

Even if we can not split students into two populations based
on outcomes, there is value in understanding how and why stu-
dents struggle. Various authors have used different features to cre-
ate models for identifying these students. In this paper we call
these models “red flags”. In “Exploring the Value of Different
Data Sources for Predicting Student Performance in Multiple CS
Courses” the authors use grade information to predict a final course
outcome [9]. They find that prerequisite grade or clicker grade
strongly predicts final grade. And in “In Situ Identification of Stu-
dent Self-Regulated Learning Struggles in Programming Assign-
ments” they use measures of stagnation in grade to indicate strug-
gle on an assignment [2]. Furthermore, Estey et al develop a model
using changes in programming behaviour to identify students in
need of support [4]. They find that they can identify students who
require support in the first few weeks of term and target outreach to
them. Neural networks have also been explored in finding students
in need of assistance. One paper uses student grades and the num-
ber of submissions as features in their model [3]. Together these au-
thors have conceptualized some feature (or “red flag”) and demon-
strated its relationship to student outcomes. In this paper we con-
tribute a tool that allows quick discovery and validation of features
like these in a general-purpose way.

2.2 Classroom dashboard visualizations
Dashboards are a common tool for understanding learner be-
haviour. For example, Kia and their collaborators created a dash-
board for visualising learner attributes in a MOOC class on edX
[8]. This dashboard displays attributes such as attendance, gender,
and age as bar charts. Ginda and their collaborators also investi-
gate MOOCs, creating conceptual content hierarchies and “learner
path” visualisations that show the steps a learner takes through a
class [6]. These tools demonstrate the utility of visualisations for
educators to understand the experience of their students throughout
a course. However, these tools fall short in that they do not allow
users to synthesis multiple attributes to model student struggle.
This means there is not an explicit way for instructors to deduce
common behaviors of struggling students and evaluate them. In this
paper, instead of visualising learner attributes directly we visualise
learners in terms of cohorts which are defined by models created
by the visualisation user.

2.3 Visualization techniques and idioms
In “Quality based guidance for exploratory dimensionality reduc-
tion” the authors create a general tool and process for reducing a
high dimensionality dataset into a single attribute one, allowing a
user to pull out interesting elements for further inspection [5]. A
user does this by selecting interesting variables and then inspecting
their correlations. The problem of identifying struggling students
also maps onto dimensionality reduction. However, in our work we
are concerned about the correlation between each potential red flag
and the true struggling students. This simplifies the problem con-
siderably because we do not care about correlation between every
pair of attributes. We also distinguish our work in that we identify
correlations between membership in the set of struggling students
instead of between quantitative attributes themselves. In ”The At-
tribute Explorer: information synthesis via exploration” the authors

introduce techniques for synthesizing multiple attributes in the do-
main of home buying [12]. Their visual technique allows for filters
to be brushed onto different attributes to create a synthetic derived
attribute of membership in a filtered set. Although we face a sim-
ilar problem to these authors, their visual technique falls short of
our needs as we wanted to allow users to express a more complex
set of synthetic attributes outside of standard range based filters.

LineUp introduces a method for visualising multidimensional
data in a tabular format. They facilitate the task of ranking based on
a user-specified model [7]. LineUp also allows for the comparison
of multiple models by displaying them side by side. This idiom
is essential to identifying struggling students because users of our
tool need to compare their candidate models to decide which is
most useful. However, LineUp stops somewhat short of the idiom
we need as they do not incorporate temporal data. We need a user
to be able to understand how their model for identifying struggling
students varies in accuracy and sensitivity over time. LineUp does
not treat attributes as time-varying.

We also use the idiom of circle packing where students are rep-
resented by smaller circles nested in larger circles representing their
groups. Circle packing was previously described in ”Visualization
of Large Hierarchical Data by Circle Packing” [13]. The authors of
this paper use circle packing to represent tree data where multiple
levels of nesting exist. In our use of the idiom, however, we only
ever pack exactly one level of nesting. However, we do make use of
similar techniques to layout the nested circles within the containing
circle.

3. Data Abstraction
The input data abstraction consists of a series of tables representing
various aspects of CPSC 310 dataset. We develop a new abstraction
over this input, which we then expose to the users of Course
Friction Explorer.

3.1 Input table abstraction
The input data is a series of tables with data extracted from tools
that the course uses. Here, we describe each table and its source,
while additional information about the exact attributes in each table
is presented in Appendix A.

3.1.1 Table autotest results
Throughout the project, students make incremental submissions
of their code by committing and pushing to branches on their git
repositories. Each team’s repository consists of a single master
branch and a number of development branches which are often-
times per member or per feature. Each project checkpoint has a
suite of associated tests that AutoTest runs on each push to these
git branches. Students can see the result of the AutoTest run on a
specific commit by explicitly requesting AutoBot 1. AutoTest result
requests are rate-limited across branches, for example, one request
on any branch per six hours per student.

Autotest results are identified by their feedback id which is a
unique identifier for each result entry. They also have several at-
tributes. They have categorical attributes representing the deliver-
able the result is for, the branch the result is from, the user who re-
quested the feedback, and the user who committed the code change.
They have ordered attributes for the score, the current visible score,
time of the request and time feedback was given.

1 Autobot is an autograding system built at UBC, students request Autobot
by commenting on a Github commit, but we run tests regardless of whether
they request it.



3.1.2 Table contributions
Piazza is the most active resource where students seek and receive
assistance from not only the course staff, but also other fellow
CPSC 310 students. Students can create posts that can be either
a note or an answer-wanted question, categorizing them using tags.
A Piazza contribution includes every action from creating a post,
replying to a post, creating a new followup to an existing post, etc,
all of which are recorded with timestamps in this table.

Piazza contributions are identified by their cid which is a unique
identifier for each contribution entry. They also have several at-
tributes. They have categorical attributes representing whether or
not the contribution was made anonymously, the kind of contribu-
tion, whether the post was tagged as ”project”, the user who made
the contribution, and the post where the contribution was made.
There is also a single ordered attribute, the time at which the con-
tribution was made.

3.1.3 Table queue visits
Aside from Piazza, TA-held office hours are also one resource stu-
dents use for issues that benefit from more synchronous, one-to-one
interaction. Access to TA assistance in office hours are regulated by
Queue@UBC, an online queue service simulating “lining-up” for
help. Each student seeking assistance would enqueue and wait for a
notification for their turn. A TA can view all the students currently
on the queue, and would pick one to “start answering” thereby
dequeuing them. Upon addressing the student’s question, the TA
would “finish answering”, recording answer finish. Note that con-
trary to a conventional queue, the TA need not follow FIFO order
strictly; this is to prioritize help for the students requiring more im-
mediate assistance.

Queue visits are identified by their qid which is a unique iden-
tifier for each queue entry. They also have several attributes. These
include the user who asked the question, and the TA who answered
it. Ordered attributes are the time of enqueue, dequeue, and the time
at which the TA started and finished answering the question.

3.1.4 Table users
A deidentified user hash, anon id, corresponds to each student
and TA. Users have a categorical attribute representing whether or
not the user is a withdrawn student. They have a single ordered
attribute, the time at which their first lab of the term started.

3.2 Revised data abstraction
We want our users to be able to write queries over our data to
answer questions about students. We find that the complexity of
joining multiple tables and filtering operations is not needed for this
purpose. Therefore, we refine the existing abstraction to a single
table of ”students” which we generate automatically. This table
starts as a filtered version of the ”users” table to remove course
staff and then is populated with data from the other tables.

Students are identified by their anon id which is a deidentified
hash. We generate new synthetic attributes to facilitate queries.
These synthetic attributes are generated at runtime using the input
dataset, so additional attributes can be added without an additional
data processing step.

• num commits - Number of commits the student has made to the
course project.

• num office hours - Number of times the student has attended
Office Hours with a teaching assistant.

• final grade - The final project grade of the Does not vary over
time.

• minutes spent with ta office hours - Number of minutes a stu-
dent has spent with a teaching assistant in Office Hours

• score c0 - Student score on c0. The first checkpoint of the
project.

• score c1 - Student score on c1. The second checkpoint of the
project.

• score c2 - Student score on c2. The third checkpoint of the
project.

• score c3 - Student score on c3. The final checkpoint of the
project.

• visible score c1 - Student score from the student’s perspective
on c1. Although we grade all commits, students only see their
score when they request it.

• visible score c2 - Student score from the student’s perspective
on c2. Although we grade all commits, students only see their
score when they request it.

• visible score c3 - Student score from the student’s perspective
on c1. Although we grade all commits, students only see their
score when they request it.

• visible total delta - The total amount of project score change a
student has made that is visible to them. For this metric each
checkpoint is considered out of 100 and added together, so it is
not bounded above by 100.

• total delta - The total amount of project score change a student
has made. For this metric each checkpoint is considered out of
100 and added together, so it is not bounded above by 100.

• visible avg delta - The average amount of visible project score
change a student makes in any given commit.

• avg delta - The average amount of project score change a stu-
dent makes in any given commit.

• num piazza answers - The number of questions a student has
answered on Piazza (our course discussion board). This in-
cludes both answers and edits made to answers.

• num piazza questions - The number of questions a student has
asked on Piazza.

• num piazza actions - The total number of actions a student has
taken on Piazza. This includes questions, answers, followups,
and any edits.

4. Task Abstraction
The tool we want to build will help instructors and TAs detect strug-
gling students early on in a course (CPSC 310). To do so, they
can use certain indicators correlated with some outcome, for ex-
ample low final grades, as red flags to identify the students. We
assume that our intended audience, CPSC 310 staff, has knowledge
in Computer Science. These indicators may be some patterns de-
pendent on the following:

• Office hour visits
• Piazza contributions
• Auto-grading results

If a student happens to fulfill a red flag, then some intervention
may be helpful in keeping the student on track. Although these
red flags can be any arbitrary condition, we can also do some
prior analysis using previous years’ data to discover meaningful
red flags. To simulate making a prediction, there should also be a
way to restrict available data to a certain time-frame. We will also
consider calculating some statistics that may describe how well the
indicator predicts the outcome.

In order to accomplish this goal we introduce the following
high-level tasks



• T1: Explore student dataset and attributes to discover indica-
tors that identify student struggles.

• T2: Validate and evaluate indicators based on their sensitiv-
ity, accuracy, stability, and speed (at identifying struggling stu-
dents).

• T3: Compare multiple different indicators based on the metrics
derived from T2.

• T4: Identify the individual students whom each indicator flags
as struggling.

We integrate these tasks into the scenarios presented in 8. Re-
sults.

5. Solution
Our solution allows course staff to explore their course dataset and
hypothesize indicators of student struggle (T1). It also provides
intuitive visual means to confirm patterns in student data in order
to validate hypothesized indicators as red flags leading to some
unfavourable user-specified outcome (T2). Moreover, the course
staff should be able to perform comparison on multiple different
indicators (T3), as well as directly identifying individual students
flagged by the indicators (T4). The instructors and TAs can use
established indicators of student friction from previous studies to
verify against their own course, but the tool also guides them to
explore their dataset and discover more novel indicators.

We propose a solution consisting of four main components split
between two separate views, namely, the Overview and the Indica-
tors Board. The Overview gives our user a summary of their stu-
dent data, thereby allowing exploration (T1), while the Indicators
Board view lets a user evaluate and compare multiple indicators si-
multaneously by visually conveying their effectiveness. Across all
components, we share a navigation idiom of change over time via
a global time slider.

5.1 Overview Histograms
When a visualization user first loads their course dataset, they are
first presented with all the usable student attributes exposed for
that dataset in the Overview page, as shown in Figure 1. The user
can toggle any subset of the attributes to see its distribution across
the entire student set. We chose a histogram to convey distribution
due to its familiarity and its effectiveness at highlighting outliers.
Further we use an idiom of small multiple views for the histograms
to increase the information density of the Overview page. We also
coordinate the multiple small histograms with shared change over
time navigation, enabling attribute exploration across time as well.
Initially we set the default start of global time slider to be at the
start of interval being explored, but later changed to start from the
end date. This is partly due to student attributes being temporal,
and many attributes, such as score c0 and score c1, only exist after
a particular time in the data. This can potentially disorient the user,
thus we bring the user to the end of data by default, allowing them
to start with a complete dataset. The multiple small histograms
together with shared change over time navigation, let our user
explore their data across multiple attributes and across time, to
pinpoint the set of attributes interesting to them as part of struggle
indicators (T1).

5.2 Indicators Board: Circular Packing
Once a user selects attributes of interest, they switch to the Indi-
cators Board where they can then create different indicators and
evaluate and compare them based on how well they predict the out-
come group. The outcome group expresses the unfavourable result
that the user wishes to intervene against. The user can configure
outcome and create indicators in a side bar by using Friction DSL,

the domain-specific language we developed for Course Friction Ex-
plorer. Figure 2 shows the elements of the Indicators Board, where
the central visualization is a node-link graph. The nodes represent
the indicators and outcome, where the outcome node is positioned
centrally. Each node is a circular packing of unit marks, represent-
ing the individual students identified by the indicator/outcome. Cir-
cular packing technique lets us directly map the sizes of indicators
and outcome sets to their node sizes. From our user’s perspective,
node sizes are also intuitive channel for indicator/outcome set size.
In addition, every indicator node is linked to the outcome node,
with link length encoding the similarity score between the two
nodes. In our first iteration, we chose a similarity score based on
set union and difference for its simplicity and explainability, but
the score did not capture false positives (ie. those who are falsely
identified by the indicator). Low false positives is a critical require-
ment to an effective indicator, and so we switched to using F-Score
as a measure of similarity.

F-Score =
TP

(TP + 1
2
(FP + FN))

(1)

TP = True positives
FP = False postives
FN = False negatives

With F-Score, we can penalize an indicator for falsely predicting
strugglers and correspondingly reflect this on its link length. The
Indicators Board uses a combination of visualization techniques
and idioms to facilitate user’s tasks, in particular, T2 and T3. We
now discuss each of these.

5.2.1 Attribute Synthesis
Our dataset exposes a myriad of attributes about each student which
altogether may have some degree of predictive power over their fi-
nal outcome. We allow the user to select some of these attributes
to generate a new synthetic attribute (ie. an indicator) and then ex-
plore how well this new attribute partitions the students. Our syn-
thetic attributes are always binary, either a student is in them or
not, and they do not have a magnitude. This feature is critical for
supporting T2-T4 because the user must be able to combine multi-
ple attributes derived from T1 to create meaningful indicators. We
developed Friction DSL for this purpose. The choice of DSL over
other alternatives like UI-aided filtering students was due to flex-
ibility and generalizability. Our user is free to combine many dif-
ferent attributes in ways supported by Friction DSL, and extending
Course Friction Explorer to other attributes and datasets require
minimal change in the frontend.

5.2.2 Semantic Zooming
The node-link graph of Indicators Board support the navigation id-
iom of panning and semantic zooming. The semantic zooming is
especially helpful to display only the relevant elements of visual-
ization based on the user’s zoom level. At a high level, the user’s
focus is on viewing multiple indicators at once for the purpose of
making comparisons (T3). Therefore, the details about each student
contained in the indicator circles are unnecessary, thus we filter out
the individual student id labels to prevent cluttering. At a lower
zoom level, the user instead tries to locate the individual student
captured by their indicators (T4). The id labels are crucial for such
identify task, thus is displayed at low zoom level as can be observed
in Figure 3.

5.2.3 Linked Highlighting
We apply another multiple views idiom in our node-link graph:
dynamic visual layering. When the user hovers on a particular



Figure 1: The Overview page consisting of side panel, multiple small histograms, and a time slider. The user interacts with the settings in the
side panel and time slider to change the histogram views.

Figure 2: The Indicators Board page also has a side panel for configuring the visualization. The visualization here is linked multiform views,
with a combination of node-link graph, stacked bar charts, and histograms.



Figure 3: At low zoom level, each student id hashes are displayed
for identification purpose. They are hidden once the user zooms out
to certain threshold.

Figure 4: The hovered student is linked and highlighted across all
other indicator/outcome circles, forming an overlay graph.

student mark within an indicator/outcome node, we superimpose a
new graph linking the selected student to the overlapping student
in other nodes (Figure 4). This is especially useful for T3, in
finding out overlaps between the different indicators. The user can
be looking at a set of highly overlapping indicators, thinking that
these are distinct. We chose hovering over clicking for selection
because it is more lightweight, and we expect the user to perform
this selection frequently.

5.3 Indicators Board: Stacked Bar Charts
A stacked bar chart visualization supplements the node-link graph.
Each outcome/indicator in the node-link graph has a corresponding
bar in the stacked bar chart as can be seen in Figure 5. One pur-

Figure 5: The stacked bar chart represents each indicator and out-
come as a bar, where the stacks corresponds to their true/false pos-
itives, and true/ false negatives. It shares the same color encoding
as the node-link graph.

pose of this chart is to visualize and juxtapose ratios of true/false
positives and negatives across all indicators in comparison (T3).
Another is to represent the group of students not visualized in the
node-link graph: the true and false negatives. While the false neg-
atives are indirectly encoded by link-length via F-Score, true neg-
atives are entirely absent from the graph. Including these negatives
in the stacked bar charts lets our user judge how representative their
outcome and indicators are when looking at the overall. We use the
color channel to encode these ratios, and make sure the same color
encoding is shared with the node-link graph. We used a 4 class di-
verging color scale from ColorBrewer2 to help us perform color
mapping. Some alternative design choices we have considered di-
rectly embedding the ratio information into the node-link graph, by
morphing each node circle into a pie chart showing the ratio. How-
ever, we chose the stacked bar charts over this to prevent the color
channel from being overloaded in the graph visualization.

5.4 Indicators Board: Histogram Widgets
Click selecting an indicator node in the node-link graph brings up
a series of histogram widgets as displayed in Figure 6. These wid-
gets support tasks T2 by visualizing indicator accuracy in terms
of sensitivity. Sensitivity, applied to our visualization domain, re-
flects how well the indicator identifies true positives: the students
belonging to the user’s outcome set. Mathematically, it is the ra-
tio of true positives to false positives. We chose to focus on sen-
sitivity as a metric for indicator performance, as the goal of our
user is identifying students that fall in outcome set. Other metrics
including specificity (ie. how well can the indicator identify true
negatives: the students that do not struggle) are therefore less effec-
tive in this task. In the widgets, we use the idiom of superimposing
two histograms: one from the outcome student set, and the other
from the selected indicator. While the layered histograms do over-
lap, we prevent occlusion by encoding each bar with low opacity. A
highly sensitive indicator will have superimposed histograms that
are highly overlapping, while a less sensitive indicator will have
non-overlapping histograms. How the histogram widgets vary with
sensitivity is further illustrated in Figure 7. The user is able to eval-
uate sensitivity of their indicators as such.

5.5 Navigation: Time slider
We implement a time slider for all views which selects some range
of the data prior to the selected point. For example, in the Indicators
Board, as the slider point is shifted, marks representing students
selected outside of the time range are not displayed. In this way,
our visualization user can evaluate the performance of an indica-
tor across time. Some indicators may only become reliable signals
close to the end of a course, while others may perform well con-
sistently throughout. This facilitates indicator comparison based on
both stability and speed (part of T2).

2 https://colorbrewer2.org/



Figure 6: Each histogram widgets show the distribution of the at-
tribute contributing to the selected indicator. The outcome distribu-
tion for the same attribute is superimposed for direct juxtaposition.

6. Implementation
We implement Course Friction Explorer as a web application, with
a backend and frontend.

6.1 Backend
We use a backend written in Python 3, mainly because of its data
processing capabilities. The backend assumes responsibility for
loading and processing the input dataset. The dataset is then made
available for querying using a DSL we designed over a REST
endpoint. For serving the API, we use Uvicorn and FastAPI 4.

6.1.1 Loading dataset for querying
We load the dataset, stored in a SQLite database, into a memory
representation which exposes a time varying interface. This means
that the frontend can provide arbitrary timestamps and the back-
end can sample attributes at that time. With this, we can define our
own derived attributes that the viz user can interact with through
our frontend interface and DSL. As described in an earlier section,
we want to abstract away complicated joins and filters that are re-
quired to extract useful information from the raw SQLite database.
Combining these derived attributes are meant to be more accessible
with the use of our DSL.

6.1.2 DSL: Writing queries
As part of our backend, we have designed a domain-specific lan-
guage (DSL) (see Appendix B) to help process different queries in
our vis tool. To create an indicator, the user would construct a query
in our DSL, which gets sent to our backend for parsing and eval-
uation. The lexing and parsing are done with Antlr5. Once Antlr
produces abstract syntax tree, we use a visitor to traverse the tree
nodes and evaluate the query. We designed our DSL to support all
the operators helpful to creating an indicator, namely logic, com-
parison, arithmetic, aggregation, and granularity operators. See our
DSL cheatsheet6 for more details on the DSL usage. We designed
the DSL to be simple to parse and not too tightly coupled to the
dataset. So, in the current state of the DSL, we use a generous num-
ber of parentheses to avoid ambiguities with order of operations,
and the recurring ”student.” prefix accesses the CPSC 310 students
dataset.

6.2 Frontend
Our React frontend makes use of a number of libraries to help ex-
pedite development. In particular, we use React components from
Materials UI7, applying customized CSS via styled components8.
Redux 9 is the backbone for our frontend state management, giving
all our individual components access to a consistent global state to
which they can update their views on. The overall structure of the
frontend is in Figure 8.

The service layer is responsible for communicating with our
backend using REST API queries. For example, the QueryService
and StudentService makes request to POST /query and GET
/students/id endpoints surfaced by the backend server.

The state management layer lies in between our service layer
and the frontend React components. We chose to offload state re-
trieval and update logic from the individual components into this

3 https://www.python.org/
4 https://fastapi.tiangolo.com/
5 https://www.antlr.org/
6 https://gist.github.com/falkirks/74be2706cd63fc20ca1beee3e918a1ea
7 https://mui.com/
8 https://styled-components.com/
9 https://redux.js.org/



(a) Highly sensitive indicator (b) Indicator with high false positive rate (c) Non-sensitive indicator

Figure 7: Histogram widget examples from three different indicators. The black bars corresponds to the outcome student group, and the teal
bars are for the selected indicator student group. The indicator in (a) exhibits high sensitivity, with high true positive and low false positive
rates. This can be seen from the almost overlapping bars of the two groups. (b) is an example of an indicator with high true positive rate but
also high false positive rate. In such case, the indicator distribution extends past that of the outcome. (c) is an indicator with low true and
false positive rates. The histogram visualizes this as non-overlapping bars.

Figure 8: High level structure of Course Friction Explorer frontend.
Each layer communicates with the layer below, retrieving necessary
data up the layers, and propagating event updates downwards.

state layer so to minimize code duplication, and to ensure states
are accessed and modified in consist manner by all components.
Redux is used heavily for this purpose. We have defined a global
redux store, consisting of multiple slices (subsets of the global state
accessible as a single unit from frontend components). For exam-
ple, the indicatorsSlice maintains the current working set of
indicators configured by the user, and surfaces the addIndicator,
editIndicator, removeIndicator, and queryAllIndicators
as common access methods invoked from all frontend components
as needed.

Finally, the React components serve as our presentation layer.
Our visualization dashboard is broken down into two major page
components: IndicatorsBoard and Overview pages. Each com-
poses smaller sub-components including the Sidebar, TimeSlider,
IndicatorEditorDialog. Despite the many components access-
ing and modifying shared state, our components remain moderately
decoupled from each other, thanks to the state management layer
moderating state accesses.

Integrating React with d3 came with some complexity, as both
attempts to assume full control of the DOMs in view. In order
to ensure they work in combination, we needed to define a clear
separation in ways they can perform DOM manipulation. We wish
to utilize d3’s strong set of data manipulation and visualization
methods, including animation and transitions. On the other hand,
React’s ease in receiving user input events (eg. zoom, pan, click)
and compatibility with our state layer is crucial. Therefore, our
approach involves using React component as a wrapper around
each chart DOM manipulated entirely by d3. For example, our
node-link circular packing chart in the Indicators Board has a
wrapper CircularPacking component which renders a single
DOM node <vis-circular-packing>. The component feeds all
the data needed by d3 to manipulate <vis-circular-packing>
to properly compute and visualize the chart. Upon updates from
the state layer and input events from user, it is CircularPacking
component’s responsibility to trigger appropriate d3 methods to
update the chart with new data. We have found this architecture
gives us the benefits from both libraries with minimal conflicts.

7. Milestones
Table 9 displays the proposed development schedule of the Course
Friction Explorer from the initial planning to writing and submit-
ting the final paper. We estimated a total of 81 person-hours on
task, with the main hours spent at implementing the Course Fric-



tion Explorer followed by writing the paper. However, estimating
and planning person hours on task tends to be very difficult and
error-prone. Therefore, we will be iteratively revising the allocation
of hours, to confirm their accuracy or adapt where needed. After re-
vising Table 9, the deadline for the backend of the course friction
explorer got pushed back due to the fact that the development of
the backend and frontend started simultaneously. Table 10 provides
a detailed breakdown of the tasks including the responsible team
members for each task, estimated workload and actual hours spent
on each task. At the bottom of each table is the total amount of work
summarized. We made the mistake of underestimating the need for
additional visualizations and therefore spend 144 hours instead of
the calculated 120 hours implementing the backend and frontend
of the tool. The estimated workload is equally divided among the
four team members.

8. Results
We contribute a visualization that allows the staff of CPSC 310 to
create, evaluate, and compare indicators of student struggle (T1-
T4). Our tool supplements infrequent course analysis tasks and al-
lows instructors to more effectively target outreach to students. To
attempt to demonstrate the efficacy of our tool, we attempt to con-
struct and reproduce previously established metrics of friction. To
evaluate the responsiveness of our tool, we perform a limited evalu-
ation on attribute generation and indicator evaluation performance.

8.1 Assignment trajectory
In ”Automatically Classifying Students in Need of Support by
Detecting Changes in Programming Behaviour”, Estey and their
collaborators introduce a trajectory metric for evaluating student
friction [4]. Trajectory is determined by the number of compiles
required to achieve a correct solution. In our CPSC 310, we do
not have instrumentation of student compilation, but we do have
data for every test run. Therefore, we can define a new measure of
trajectory, students who have below a specific threshold of grade
change in an average week. We can express this in Friction DSL

(avg(weekly(student.avg_delta)) <= 1)

We selected 1 by using the Overview histogram for the avgdelta
to determine a reasonable threshold value. Then we can enter this
indicator into Course Explorer. As our outcome, we select students
with a final grade less than 50%. In 9a, We see that at near the
beginning of term the indicator does identify some of the outcome
set, but it also generates a number of false positives. As the term
goes on (shown in 9b), the indicator becomes more specific and
eventually has no false positives. However, the indicator still lacks
somewhat in sensitivity, as it fails to identify some of the outcome
set.

8.2 Component grades
In “Exploring the Value of Different Data Sources for Predicting
Student Performance in Multiple CS Courses” the authors use
grade information to predict a final course outcome [9]. We can
create a similar evaluation for our dataset using Course Explorer.
We start by establishing several indicators that represent failing
grades on each component of the project

(student.score_c0 < 50)
(student.score_c1 < 50)
(student.score_c2 < 50)
(student.score_c3 < 50)

We then set our outcome set of interest to again be the students
who failed the overall project. Grades are only defined after an
assignment is completed so for these indicators it makes most

(a) ”Assignment Trajectory” indicator shown near the beginning of term.

(b) ”Assignment Trajectory” indicator shown near the end of term.

Figure 9: Circular Packing and Stacked Bar chart views for ”As-
signment Trajectory” indicator evaluation. Where outcome is the
set of students with a final grade below 50%.

sense to evaluate at the end of term, once all component grades are
completed. In ??, we find all of these indicators perform similarly.
They are quite sensitive, very few students that fail the project
are not captured by one of these indicators. However, they are
somewhat inaccurate, each includes some false positives, with c2
having the least. c2 is a refactoring assignment which links heavily
to c1 and is then needed for c3, so we could conjecture that a c2
failure represents a more major issue with the course project.

In order to more faithfully reproduce the previous work, we
could integrate other sources of grade data. This would include
exam data and prerequisite grade information. Our visualization
system is built in such a way that these attributes could easily be
added to the dataset without making any modifications to the actual
visualization code.

8.3 Attribute/indicator computation responsiveness
Course Explorer shifts complex computation from the client onto
the server application. This means that vis performance is some-
what client agnostic. Once attributes are computed for the requested
times, the frontend can support navigation with negligible latency.



Figure 10: Course Explorer interface with four indicators created,
one representing a failing grade for each checkpoint. The outcome
set is defined to be an overall failing grade.

However, computing the attributes and indicators in their current
form are resource intensive operations. 10

To evaluate our attributes we generated each synthetic attribute
25 times for every student and took the mean time to complete
every student. We find that attribute complexity varies quite sub-
stantially. The simplest attribute final grade takes only 0.00002
seconds to complete on the dataset. All score related ones take un-
der 0.7 seconds. However, computing score change consumes on
average 2.14 seconds. This is due to the comparatively larger set
of autotest results and the computation required to sum or aver-
age the grade change. We find that these timings are acceptable for
most attributes, with further work required to bring down change
related attributes. Additionally, our server currently does not cache
results as we imagine our users would interact infrequently and run
unrelated queries. While there is some benefit in directly caching
attributes as they are queried, we think we would only see major
benefit to responsiveness if we warm the cache throughout the life
of the server. We could warm the cache using statically anticipated
queries or dynamically based on previous queries.

We then assessed the responsiveness of our indicator evaluation
system, which adds a DSL on top of the synthetic attributes. We
evaluated our DSL by constructing queries of increasing complex-
ity and plotting evaluation time as depth increases. To setup this
experiment we start with a seed indicator

(((student.score_c0 + 10) - 10) < 70)

then at every iteration we nest this query in a logical AND. At
the first iteration we would have

((((student.score_c0 + 10) - 10) < 70)
AND (((student.score_c0 + 10) - 10) < 70))

We choose this indicator as it uses a non-trivial attribute, and
employs a comparison and two arithmetic steps. We also patched
our code to disable short circuiting of AND statements, so the
amount of true positives would not affect how much of the indicator
was executed. We used a mean of 10 executions for this evaluation.
We saw in 12a a linear trend as depth increases. Where an indica-
tor of depth 15 takes around 10 seconds to evaluate on all students.
However, drawing back on our evaluation of attribute run times we

10 We performed all our responsiveness tests on a ”MacBook Pro (14-inch,
2021)” using an ”Apple M1 Pro” processor and with 32GB of total RAM.

Figure 11: Execution time in seconds plotted in a bar chart again
attribute type. Based on an average of 25 runs on the entire dataset.

presumed this linear relationship was heavily bound to the attribute
running time. To investigate we the ran experiment again, but ex-
cluded the execution time of the attribute generation code path. In
12b we find that the execution time of the DSL itself does not have a
linear relationship with indicator depth once attribute generation is
excluded. We infer that the improvements we suggested to caching
attributes would also greatly benefit indicator execution since indi-
cator execution is dominated by attribute generation.

9. Discussions and Future Work
For future work, we consider implementing a more intuitive visual
encoding for viewing repeated students within many indicators.
Currently, to check whether a student appears in many indicators, a
user must hover over individual students and check each spawned
network selection. A more appropriate solution could be allowing
a selection of the entire indicator, which could spawn some visuals
that describe the redundancy of other indicators relative to the one
selected. This could, for example, be achieved with some shading
of the circle. A fully shaded indicator could represent a full overlap,
and no shading means completely disjoint groups.

Another limitation is the information sparsity of our current vi-
sualization; indicator circles are rendered in a force-directed graph,
in which their distance to the outcome circle encodes similarity.
Initially, this design choice was made so our visualization would
utilize position as a channel, given its effectiveness over other chan-
nels like color. However, testing showed that this resulted in indica-
tor circles often being far apart, sometimes leaving the screen space
entirely. The visualization also becomes sparse, requiring the user
to pan and zoom too frequently to make comparisons or see details.
With more time, we intend to remove this distance encoding, and
switch to using line-width to encode similarity.

Another related issue is scalability. Once an indicator set be-
comes large, the visualization could contain clusters of many small
student marks that each do not add much value, other than for in-
dividual identification. So instead of representing each student as
its own mark, we can aggregate them in some way. One approach
is to introduce additional hierarchies to the circular packing, by ag-
gregating multiple students into a single mark. Another approach is
to turn an indicator into a pie-chart like structure, representing true
positives or false positives as shaded percentages.

Currently, the time slider adjusts a global time range for all in-
dicators and attributes, so there is no option to time restrict indi-



(a) Total execution time in seconds plotted against query
indicator ”depth” (number of clauses nested).

(b) Total execution time with attribute generation excluded
plotted against indicator ”depth” (number of clauses nested).

Figure 12: Evaluation of indicator depth and its influence on exe-
cution time.

vidual indicators. This was intended to simulate being at a single
time point within a term, so naturally the user would have all their
attribute data up to a certain time. However, as we tested our tool,
we realize that local time-ranges may be useful. For instance, the
number of commits a student makes in a certain time frame, or at
certain times in a week, may be an interesting indicator. Currently,
the user would not be able to express this indicator without also
restricting the time range of all other indicators, essentially making
comparison impossible. Having a way to express more fine-grained
time ranges may help address this issue.

On the Overviews page, we display histograms of individual
attributes, without any option to combine them. To help users
get a better overview before making an indicator, we could allow
histograms that show more expressive combinations of attributes.

Lastly, we rely solely on the DSL to define our indicators.
This assumes that our target users are very programming-literate
instructors and staff of a course. Still, it may be unintuitive to
construct an indicator without any visual cues. An interactive GUI
for constructing an indicator may be helpful for our target users and
could make the tool more accessible to layman users.

10. Conclusion
We introduce an interactive visualization tool for CPSC 310 staff
with a number of different visualizations. This tool is intended to
aid CPSC 310 staff in understanding student struggles by creating,
evaluating and comparing indicators as well as developing possi-

ble interventions based on the given data. The overview allows the
staff to explore changes of specific attributes over time, such as the
change in office hour visits as the term evolves. The staff can decide
which attributes to display and how to set the time intervals. Com-
paring attributes by creating indicators and predicting the outcome
groups of students is also supported by our indicator board. The
indicator board consisting of Stacked Bar Charts, Histogram Wid-
gets, Time slider and Circular Packing allows CPSC staff to select
specific students, identify patterns and compare different indicators
by using different queries. We believe that the Course Friction Ex-
plorer is a suitable tool for the CPSC 310 staff for identifying and
understanding the struggles of students, helping them better guide
students through the course.
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A.
Input dataset attributes

A.1 Table autotest results

Table 1: Categorical attributes

Name Description # of categories Example
deliv Checkpoint number 4 c0, c1
ref Git branch AutoTest was called on 1665 refs/tags/c2-rc5
is master True if ref is the master branch 2 1, 0
feedback requester Deidentified user hash of the requester 409 j+TyZUe34/c1mZOH9tppky9CF/UubYnhJmIGIdFECDY=
committer Deidentified user hash of the committer 409 F+CFt8v9oVAaHZppCNKYTSN+KCszD8C8vHdPeIh8NiY=

Table 2: Ordered attributes

Name Description Min Max Example
score Test score of this AutoTest run 0.00 100.00 100.00
visible score Test score reported back 0.00 100.00 90.00
request time Timestamp of when a student 1610400675825 1622674908773

requests the result (Mon Jan 11 2021 13:31:15) (Wed Jun 02 2021 16:01:48)
feedback time Timestamp of when result is returned 1610400675825 1619628202579 1610521081669

A.2 Table contributions

Table 3: Categorical attributes

Name Description # of categories Example
is anonymous True if post is created by anonymous contributor 2 0
kind Contribution kind 12 followup
is project True if contribution is tagged as project 2 1
anon id Deidentified id of the contributor 409 07e7yyUGH4zoF+i5UF3PH9dmjTwCIMizU+GVt2TmNnM=
post id Post ID 1436 Ks43Y68znhtzXws8zNnDGidHOuGi2ApOKgsHqyIOc/k=

Table 4: Ordered attributes

Name Description Min Max Example
created at Timestamp of contribution 1610149993000 1620093785000

(Fri Jan 08 2021 15:53:13) (Mon May 03 2021 19:03:05)



A.3 Table queue visits

Table 5: Categorical attributes

Name Description # of categories Example
anon id Deidentified user ID 409 DjN2/LSrZHkxfxAk/ka8gIigB6vY11Usc2AUFScIc3o=
answerer id Deidentified answerer ID 27 Nxw7gaFw+d2v0moktJ1dGKzd4Ix2fgZTgjLG0P7OFO8=

Table 6: Ordered attributes

Name Description Min Max Example
enqueue Timestamp of enqueue 1600386235000 1618015298000

(Thu Sep 17 2020 16:43:55) (Fri Apr 09 2021 17:41:38)
dequeue Timestamp of dequeue 1600386253000 1619307862000

(Thu Sep 17 2020 16:44:13) (Sat Apr 24 2021 16:44:22)
answer start Timestamp 1600386239000 1618013723000

(Thu Sep 17 2020 16:43:59) (Fri Apr 09 2021 17:15:23)
answer finish Timestamp 1600386253000 1618016558000

(Thu Sep 17 2020 16:44:13) (Fri Apr 09 2021 18:02:38)

A.4 Table users

Table 7: Categorical attributes

Name Description # of categories Example
withdrawn True if the user withdrew from the course 2 1

Table 8: Ordered attributes

Name Description Min Max Example
first lab time Timestamp of the user’s first lab, 1610384400000 1610751600000

Null if user is a TA. (Mon Jan 11 2021 09:00:00) (Fri Jan 15 2021 15:00:00)



B.
DSL Grammar

query : some_filter;
some_filter : logic | binary;
logic : ’(’some_filter (’AND’|’OR’) some_filter’)’

| ’(’’NOT’ some_filter’)’;
binary : ’(’comparable (’>’|’<’|’<=’|’>=’|’!=’|’==’) comparable’)’;
comparable : number | time | string | student_attribute;
number : Number | arithmetic | modified_attributes;
modified_attributes : student_attribute

| granularity_operator’(’modified_attributes’)’
| aggr_op’(’modified_attributes’)’ ;

granularity_operator : ’daily’|’weekly’|’monthly’|’final’|’sofar’;
aggr_op : ’avg’ | ’count’ | ’max’ | ’min’ | ’sum’ | ’val’ ;
arithmetic : ’(’number (’+’|’-’|’*’|’/’) number’)’;
string : student_attribute | String;
time : time_lit ;
student_attribute : ’student.’attribute;
attribute : String;
time_lit : ’time’ ’(’ String ’)’;

Number : DIGIT+ ’.’ DIGIT*
| ’.’ DIGIT+
| DIGIT+
;

String : [a-zA-Z0-9_\-]+;



C.
Milestones

Task Due date (Total/Per
person)

Actual hours
spent

Description Status

1 Pitch Sep. 29 8/2 8 Create content and rehearse pitch Complete

2 Proposal Oct. 21 28/9 28 Discuss the project, create illustrations and write
the project proposal

Complete

3 Learning and under-
standing the tools

Oct. 28 40/10 36 Read the documentations and examples. Learn
how to use the tools and how they can interact.

Complete

- d3.js Oct. 24 16/4 16 Complete
- Fast API Oct. 26 12/3 8 Complete
- Python Oct. 28 12/3 12 Complete

4 Project Update I Nov. 16 12/3 16 Prepare and provide updated paper for Peer Re-
views

Complete

5 Project Update II Nov. 24 16/4 12 Prepare for the Post-Update Meeting and demon-
strate the prototype

Complete

6 Implementation Dec. 6 160/40 180 Implement and complete the Course Friction Ex-
plorer

Complete

- Backend: Setup, Data,
Configs, Querying, DSL

Nov. 26 60/15 65 Setup the environment, clean and work with the
data in the backend, do the configs and create
queries.

Complete

- Frontend: Circular
packing, Table

Nov. 26 60/15 80 Implement the frontend by i.a. creating circular
packing and table models.

Complete

- Analysis Dec, 6 40/10 35 Generating additional properties people might
use

Complete

7 Draft of the final paper Dec. 8 20/5 15 Write draft of the final paper Complete

8 Presentation Dec. 15 16/4 21 Prepare slides for the final presentation and talk-
ing points

Complete

9 Final paper Dec. 17 24/6 30 Finish the paper and include final changes and
conclusion

Complete

Total hours spend 324/81 346

Table 9: Overview of project milestones and person hours allocated to each



Task Assignees (Total Hr. /
Per person)

Actual hours
spent

Status

Backend - Environment
setup

Marie, ToTo 6/3 5 Complete

Backend - Clean and load
the data

Noa 6 7 Complete

Backend - Configs Shizuko 3 3 Complete

Backend - DSL Features Noa, ToTo 12/6 12 Complete

Backend - EBNF and pars-
ing

ToTo 18 21 Complete

Backend - Queries Noa 15 17 Complete

Frontend - Environment
setup

Shizuko, Marie 4/2 4 Complete

Frontend - Redux integra-
tion

Shizuko 3 3 Complete

Frontend - Circular Packing Marie 15 16 Complete

Frontend - Time slider Shizuko 12 10 Complete

Frontend - Histograms Shizuko, Marie 20/10 21 Complete

Frontend - Additional visu-
alizations

All 6/3 25 Complete

Total hours spend All 120/30 144

Table 10: Breakdown of project tasks for the backend and frontend of our project
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