
Necklace Maps for COVID-19 Visualization

Mary Abikoye, Minglong Li, Jocelyn Minns

Fig. 1. A view of the necklace map generation tool. Countries and data specified on the left will be plotted as symbols on appropriate
necklaces on the right. Hovering over a symbol allows the user to see exact data about that country.

Abstract— Choropleth maps are commonly used for visualizing epidemiological data, however their weakness lies in the ability give
visual weight to large geographic areas regardless of their significant on the data. Necklace maps offers an alternative that shifts
the visual weight to the data attributes rather than the geographic area. In this project, we implement the automated necklace map
generation algorithm while incorporating an interface to allow users to generate necklaces that correspond to specific countries and
data attributes. We extend the original algorithm to allow multiple necklaces to visualize multiple data attributes at once. We looks at the
resulting necklaces maps for readability and examine the computational time required with this implementation to further understand
the usability of this approach.

Index Terms—Necklace Maps, Proportional Symbol Maps, Epidemiology Visualization

1 INTRODUCTION

Fig. 2. A Figure from the original necklace map paper [8]

Necklace maps [8], as shown in Figure 2, are a form of visualization
that combines elements of proportional symbols maps and boundary

• Mary Abikoye. E-mail: temiabik@student.ubc.ca.
• Minglong Li. E-mail: limnglng@cs.ubc.ca.
• Jocelyn Minns. E-mail: jminns@cs.ubc.ca.

labeling. The projection maps each region of the input to a contiguous
interval on the necklace in such a way that the interval captures the
global location of the region with respect to the necklace.

The advantage of necklace maps over the common choropleth maps
is that they give more visual weight to the quantitative variable, rather
than just the geographic area. This can be preferred when we are
dealing with epidemiological data since large geographic areas may
have a space population, but that large area holds more visual weight
than a densely populated city. When users see these choropleth maps,
they can easily misunderstand the data to assume the situation is better
or worse than the quantitative variable indicates.

Since the rise of the COVID-19 pandemic in early 2020, data about
various factors in the spread and response to the disease have become
commonplace in our daily lives. However, many visualizations of
this data continue to favour choropleth maps. For this project we
implemented necklace maps to visualize three major factors of the
COVID-19 pandemic: confirmed COVID-19 cases, vaccination rates
and a stringency index.

2 RELATED WORK

Choropleth maps are a thematic map that is well suited to show quanti-
tative attributes of geographic data [6], however there can be significant
drawbacks to relying on this method. When the quantitative attribute is

focused on the population, these maps can overemphasize large geo-
graphic areas regardless of their sparse population due to their strong
visual weight. Different thematic maps have been proposed over the
years and while they may each have their own advantages, no clear
alternative has been identified [1]. Additionally, choropleth maps can
be ill suited for the task of observing changes over time in the data.
In a study on animated choropleth maps, the phenomenon of change
blindness hindered the user from perceiving changes in the data [3].

Epidemiological data is commonly visualized using choropleth maps,
though careful consideration must be given to ensure these maps can
be useful to epidemiologists. Variations in classifying the data must be
considered to accurately inform those relying on these visualizations [2].
The recent COVID-19 pandemic has seen a surge in visualization ap-
proaches [9] including a heavy reliance on choropleth maps, however
the limitations of these maps must be considered when creating visual-
izations to avoid potential misinformation [5].

Necklace maps [8] are a proposed alternative to the choropleth
maps. This method combines proportional symbol maps and boundary
labeling to create a one-dimensional curve containing scaled symbols
corresponding to a quantitative attribute for a particular region. This
can help visualize data that is not proportional to region sizes.

3 DATA AND TASK ABSTRACTION

To evaluate our implementation, we will focus on specific datasets and
tasks while producing our necklace maps.

3.1 Datasets
Our World in Data provides publicly available datasets on the COVID-
19 pandemic [7]. Specifically, we want to look at three attributes:
Confirmed COVID-19 cases, reported vaccination rates and the strin-
gency index.

The confirmed COVID-19 case data gives a daily update of the con-
firmed case count per million people by country. This data is updated
daily for many countries, but reported cases can vary depending on
how the area chooses to report their cases on weekends or holidays. To
mitigate this reporting inconsistency, we will use the smooth data over
the 7-day period. Vaccination rates provide the reported percentage
of people vacationed by country. We will focus on the data of people
both partially and fully vaccinated. The stringency index looks at the
response policies regarding the COVID-19 pandemic. The Oxford
Coronavirus Government Response Tracker (OxCGRT) [4] project cal-
culates this stringency index of countries using 20 indicators divided
into 5 categories: Containment and closure policies, Economic policies,
Health system policies, Vaccination policies, and Miscellaneous poli-
cies. The final stringency index is a number between 0 and 100 where
100 is the strictest.

3.2 Tasks
The main tasks we hope to accomplish will involve visualizing the
datasets listed above. Some tasks we would like to achieve with our
implementation of the necklace map algorithm are:

• Discovering trends by comparing symbols on different necklaces.
e.g. Is there a noticeable pattern in the case number necklace and
the stringency index necklace?

• Look up a specific country’s data. e.g. What are the current
COVID-19 case numbers in Canada?

• Compare different geographic areas: e.g. How does the vacci-
nation rate necklace of Europe compare to the vaccination rate
necklace of North America?

4 SCOPE

In this section we define the relationship between our work and the
original necklace map paper [8]. In addition to generating a visually
pleasant necklace of glyphs representing quantitative data, our work
extends the capabilities of the necklace map mostly in three aspects:
interactive environment, dynamic necklace generation and multiple-
necklace display.

4.1 Interactive Environment
The original necklace map is a static visualization, however, we would
like to present an interactive map to let the user to freely explore any
set of countries with available data. Also, since for each country we
have three sets of quantitative data (case numbers, vaccination rate and
policy stringency index), the user should also be able to select any or
all three datasets to visualize.

4.2 Dynamic Necklace Generation
Speckmann and Verbeek [8] generated the necklace manually first and
then placed the glyphs onto calculated spots. However, in our case, the
radius and center of the necklaces will be determined automatically
based on the selected countriesin.

4.3 Multiple-necklace Display
In order to visualize a maximum of three quantities per country at the
same time, we instantiate one necklace per quantity. Therefore, if the
user selects to visualize all three datasets, there will be three necklaces
at the same time, as opposed to one fixed necklace [8].

Fig. 3. Nested necklaces used to show multiple data attributes as sym-
bols on multiple necklaces. Each necklaces represents a different at-
tributes.

We considered several ways to visualize multiple datasets with the
necklace map algorithm. The simplest way is to split the screen into
different regions where each region contains an entire map with a
single necklace in it. Each region would essentially be responsible
for visualizing one of the datasets. There are two main drawbacks to
this method. First, the user might not always want to visualize the
same number of datasets, which means the division of the screen is
dynamic, thus poses more cognitive load on the user. More importantly,
since each region contains an entire map of the world, smaller countries
become harder to identify. The geographical association would not be
preserved since it relies on the colour coding between countries and
markers.

Another approach is to use some type of glyph to represent all the
datasets of interest of the same country and place them on one necklace.
The advantage is that it saves a lot of space on the screen so it allows
potentially larger necklaces. However, the choice of glyph becomes
rather difficult, since the datasets to be visualized are not always directly
comparable to each other. For example, the vaccination percentage and
COVID-19 case number per million people of a certain country have
different units. Therefore, it does not make sense to combine them in a
bar chart or pie chart. Other choices of glyphs such as mini heatmap
or some sort of texture glyphs would compromise the quantitative
interpretability of necklace map.

The approach that we use, as mentioned before and shown in Figure
3, is to use concentric necklaces to represent different datasets and show
all of the necklaces on the same map. The markers are still circles so the
quantities are still encoded with the area of the circles. This encoding
means that the quantitative data can be interpreted rather easily by the
user. In addition, the nature of the algorithm makes markers of the
same country on different necklaces appear roughly on the same radial
line. This fact combined with colour coding allows the user to associate
the countries across different necklaces.

5 IMPLEMENTATION

In this section we discuss our implementation decisions and details, by
breaking down our approach to the problem into the following aspects.

5.1 Necklace Map Generation
5.1.1 Language and Packages

In order to implement the Necklace map algorithm (backend of the
project), it is vital that we select the appropriate programming language
and packages. After experimenting with some of the recommended
options, we decided to go with Python due to our familiarity with it.
To build an interactive visualization, we are using the recommended
Altair package. In addition, Geopandas is utilized for its easy access to
geographical information and Pandas to read and store the COVID-19
dataset.

5.1.2 Retrieving Data

The data for both the geographic polygon and COVID-19 datasets will
be loaded into the Python script. Geopandas and Pandas provides a
simple interfaces to retrieve the data and store the in their respected data
frames. Both datasets contain an attribute of the county’s international
ISO 3166 standard code which we use to associate the COVID-19 data
with each geographic polygon. The COVID-19 dataset is retrieved from
the Our World in Data website each time the Python script is executed
to ensure the necklaces contains the most recent data.

5.1.3 Necklace Generation

Automatic generation of necklaces based on user selection is something
that was not included in the necklace paper. We devise an algorithm
for this purpose as follow:

1. Find the convex hull encompassing all countries and its geometric
center. This step can be accomplished quite straightforwardly
with the geographical data provided by Geopandas.

2. We choose the geometric center of the convex hull as the center
of the necklace. The radius of the innermost necklace can be
determined by finding the largest distance between vertices of the
convex hull and the center.

3. In the case where the user selects to visualize multiple variables,
the size of the markers on the inner necklace are calculated first
and the maximum radius is used as the gap between inner necklace
and the outer necklace.

Fig. 4. A visualization of a convex hull and its encompassing necklace.

An example showing the convex hull and the innermost necklace can
be found here in Figure 4. Note that this is different from the smallest
circle surrounding the convex hull. The center is shifted towards area
with more countries to be more visually pleasing.

5.1.4 Marker Size

To calculate the size of the markers, we use the same algorithm de-
scribed by Speckmann and Verbeek [8]. For the purpose of explanation,
we define a dataset Z = {z1,z2, . . .zn} where zi is the normalized nu-
merical value of the variable that the user wants to visualize on the
necklace for country i.

We begin by calculating the feasible interval, Ii, for each country
i. A feasible interval is the maximum arc a marker is allowed to be
placed within along the necklace. The original paper provided three
different approaches to calculating this interval. Our implementation
uses the Centroid Intervals approach which calculates the center of the
feasible interval using a line from the the center of the necklace and
through the centroid of the county and intersecting with the necklace
perimeter. The interval is a fixed length depending on the number of
markers that will be placed on the necklace. Few markers will allow
larger intervals per marker, while increasing the amount of marker will
decrease the interval size. Note that feasible intervals for different
markers can overlap. For detailed description of how it is calculated,
we refer readers to Speckmann and Verbeek [8].

Then, to make the area of the marker of country i proportional to zi,
we calculate the radius of the marker as

z′i = asin(
ρ
√

zi

r
)

where r is the radius of the necklace and ρ is a coefficient that is the
same across all markers [8].

The last step of optimizing ρ is where our implementation differs
from the original implementation. The goal of this step is to adjust
ρ such that all markers do not overlap and take up as much space as
possible on the necklace while their center remain within their feasible
intervals. The original implementation approximates z′i using a linear
relationship, z′i = ρzi, and obtain ρ by solving a linear programming
optimization problem.

However, in our case, the total number of selected countries is
always a small number. Therefore, we can afford to use the more
accurate representation z′i = asin(ρ

√
zi

r). In our implementation, we
first calculate the upper bound ρmax by setting the markers to take
up the entire necklace. Then, we perform a binary search on ρ with
minimum being 0 and maximum being ρmax. The search ends when
all markers remain in their intervals and at least one marker lies on the
far edge of their feasible interval. At this point we can determine this
as our ρmax since any larger ρ would push that marker outside of their
interval.

If the data is not available for a specified country, then no marker
will be included on the necklace for the country. When more than
one necklace is generated, symbols on outer necklaces will be sized
assuming they would be placed on the inner most necklace. This is
to prevent outer necklaces from holding more visual weight that inner
necklaces, but does result in outer necklaces having larger spacing
between symbols.

5.1.5 Marker Placement

After the sizes of the markers are determined, we use the same approach
in the original necklace paper [8] to calculate the positions of the
markers. The idea is to assume that there are two forces acting on each
marker: a repelling force Frep and a centering force Fmid . The repelling
force comes from adjacent markers and the centering force tries to
keep the marker to the center of its feasible interval. The original
implementation sets the total force of all markers to be 0 and solves
this system of equations.

However, in our implementation, the problem is relaxed to be an
optimization problem where we minimize the sum of absolute value
of all the net forces, with the feasible interval being the constraints for
the positions. This relaxation allows for more feasibility even when
dealing with regions with extreme shapes and arbitrary arrangement of
those regions.

5.2 User Interaction
The user interface is implemented with HTML, JavaScript and PHP to
allow users to generate specific maps. Unfortunately the Altair toolkit
does not suppose direct user interaction for geoshape charts, thus we
were not able to allow users to select countries on the map itself. Instead
users may select countries from the search bar provided and choose
data attributes to visualize from the checkboxes. We limit the number
of countries a user can request to 10 since more would degrade the
colour encoding on the necklace. Once the user enters their designed
data, JavaScript must pass this from the client-side to the server-side for
the necklaces to be computed and generated. To do this, we use a PHP
script to act as a bridge between the JavaScript and the Python programs.
The PHP script executes the necklace map generation script and replies
to the client-side when the process is complete. The JavaScript can
then retrieve the resulting chart as JSON data from the server to display
to the user, as shown in Figure 5. This process is unfortunately time
consuming and takes several seconds to complete.

Fig. 5. A visualization of the flow of information between the client-side
and the server-side while generating a necklace map.

6 RESULTS

Fig. 6. The interface of the resulting program.

Figure 6 shows the interface of the resulting program of this project.
On the top left is a dropdown search bar where the user can type to
search or scroll and select their countries of interest. Below the search
bar are checkboxes for the datasets. On the right is the main view which
shows an entire map of the world projected using the Mercator method.

Below we describe the ideal final program and how the user would
interact with the tool. We aim to have the users explore the dataset with
the following steps:

1. Upon starting the software, a map of all countries in the world ap-
pears. The user can hover over the countries to view all available
data for that country.

2. The user would then use the search bar to select countries and
datasets they want to visualize.

3. After selection is finished, the user can click the ”Generate Neck-
lace Map” button to view the necklace(s). For each dataset they

selected, a necklace visualizing the data of interest would appear
in concentric circles.

4. All selected countries are colour coded corresponding to its sym-
bol colour on the necklace. And all unselected countries would
be grey.

We benchmarked our algorithm on the linux virtual machine with
the following specifications: Intel Xeon CPU E5620 @ 2.40GHz with a
memory of 16G. Table 1 shows the runtimes of different configurations:

Number of
Necklaces

Number of
Countries

Average Runtime (s)
Over 10 Runs

1 2 6.7862
1 5 6.7461
1 10 6.7666
2 10 8.0949
3 10 8.8818

Table 1. Benchmark of our algorithm

Since the maximum number of countries that can be visualized at the
same time is limited to 10, our benchmark only goes up to 10 markers.
The resulting map can be generated within the matter of seconds, which
means the user can explore the datasets at a reasonable speed.

7 MILESTONES

See Appendix A.

8 DISCUSSION AND FUTURE WORK

Previously no user-interface allowed for dynamic necklace map genera-
tion which limited many from using this type of proportional symbol
map. This implementation may allow other users to explore necklace
maps to see the benefit of alternative types of geographic visualization.
By allowing the extension of multiple necklaces to visualize different
attributes, we also extend the tasks that can be achieved using this
algorithmic approach.

However, there are limitations to our implementation. Our imple-
mentation suffers from a slow user-interaction design. Since it will take
several seconds to connect to the backend code, load the full datasets
and produce a necklace, users can get frustrated with the system. Much
of this is from the design of the communication between the frontend
and backend of the system.

Another limitations is that necklaces which contain countries that are
geographically far apart will produce visual challenges. If a necklace
surrounds distant countries then it will become too large and over-
flows on the left or right of the map. This will cause the necklace to
wraparound to the other side of the map creating a necklace that is
unusable to the user due to its disjointed display.

Lastly since we choose to use the Altair toolkit, there is little user
interaction allowed with the produced necklace map. The intuitive
interaction would allow users to directly select which countries on the
map that they would like visualized on the necklace, however we limit
users to the less desirable design of selecting countries through a search
bar. This is due to the static nature of Altair visualizations.

8.1 Lessons Learned
Thought the development of our necklace map implementation, we
have learned the importance of thoroughly investigating toolkits early
in development. Had we realized earlier the limitation of Altair, we
may have opted for a more interactive visualizations rather than limiting
how users were able to interact. We would need to choose a toolkit that
better balances the computational requirements and the interactivity.

8.2 Future work
To improve our necklace map implementation, there are several areas
we would want to focus on going forward. A key feature of the original
algorithm that we were not able to implement ourselves is the use of
irregular necklace shapes. If we introduced this feature, then we could

better deal with countries that are far apart that may produce overly
large necklaces by opting for a curve or shape that more closely follows
the geographic area.

Another area would would like to improve is the ability to visualize
many countries at once. If we intruded a clustering algorithm then we
could spilt symbols between multiple necklaces to keep them close to
their geographic area while not overloading a single necklace.

We would like to optimize the time to generate the requested neck-
lace map. One approach would be to use a Python server running that
we could be connected to an I/O socket rather than depending on a
PHP script to execute the Python code each time. This would decrease
the time since the script would not need to load the datasets from Our
World in Data each time a necklace is produced. More importantly
though we would want to focus on optimizing the algorithms used in
the necklace map computation. Due to time limitations of this project,
we opted for simplified implementations of the optimization algorithms
which we cannot guarantee are the most efficient implementations.

9 CONCLUSION

Necklace maps offer a unique way of visualizing and interpreting epi-
demiological data. By implementing this type of visualization with the
COVID-19 dataset, we can allow users further explore the advantages
of different types of proportional symbol maps. We outlined the areas
where we observed the original automated necklace map germination
algorithms and where we differed to complete the same requirements.
With the resulting implementation, we are able to proceed multiple
necklaces to visualize multiple attributes. Lastly, we are able to do this
within a reasonable computational speed that allows users to interact
with the system to produce customized necklace configurations.

ACKNOWLEDGMENTS

We would like to thank professor Tamara Munzner for her instruction
and guidance throughout the term. We would also like to acknowledge
Bettina Speckmann and Kevin Verbeek who authered the paper that
inspired this project.

REFERENCES

[1] L. Besançon, M. Cooper, A. Ynnerman, and F. Vernier. An evaluation of
visualization methods for population statistics based on choropleth maps.
arXiv preprint arXiv:2005.00324, 2020.

[2] C. A. Brewer and L. Pickle. Evaluation of methods for classifying epidemi-
ological data on choropleth maps in series. Annals of the Association of
American Geographers, 92(4):662–681, 2002.

[3] C. Fish, K. P. Goldsberry, and S. Battersby. Change blindness in animated
choropleth maps: An empirical study. Cartography and Geographic Infor-
mation Science, 38(4):350–362, 2011.

[4] T. Hale, N. Angrist, R. Goldszmidt, B. Kira, A. Petherick, T. Phillips,
S. Webster, E. Cameron-Blake, L. Hallas, S. Majumdar, et al. A global
panel database of pandemic policies (oxford covid-19 government response
tracker). Nature Human Behaviour, 5(4):529–538, 2021.

[5] C. Juergens. Trustworthy covid-19 mapping: Geo-spatial data literacy
aspects of choropleth maps. KN-journal of cartography and geographic
information, 70(4):155–161, 2020.

[6] T. Munzner. Visualization Analysis and Design. CRC Press, Taylor &
Francis Group, 2015.

[7] H. Ritchie, E. Mathieu, L. Rodés-Guirao, C. Appel, C. Giat-
tino, E. Ortiz-Ospina, J. Hasell, B. Macdonald, D. Beltekian, and
M. Roser. Coronavirus pandemic (covid-19). Our World in Data, 2020.
https://ourworldindata.org/coronavirus.

[8] B. Speckmann and K. Verbeek. Necklace maps. IEEE Trans. Vis. Comput.
Graph., 16(6):881–889, 2010.

[9] Y. Zhang, Y. Sun, L. Padilla, S. Barua, E. Bertini, and A. G. Parker. Mapping
the landscape of covid-19 crisis visualizations. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems, pp. 1–23, 2021.

A MILESTONES

Weeks Task and Description Starting Data Actual Hour Spent

W1
(Oct 17th - Oct 23rd)

• T1: Write Project Proposal (Oct 21 noon)
(all members - 4 hours each)

Oct 17 T1: 4 hours each member

W2
(Oct 24th - Oct 30th)

• T1: Literature Research (all members - 4
hours each)

– Other map visualization techniques

– Capabilities and learning curves of
multiple tools

• T2: Data Exploration (all members - 1
hours each)

– Examine data available. Determine
what filtering is required from exist-
ing data:
Stringency Index
Case Number
Vaccination Percentage

Oct 24th T1 & T2: 5 hours each member

W3
(Oct 31th to Nov 6th)

• T1: Programming Ramp-Up (all members
- 6 hours each)

– Become familiar with chosen pro-
gramming tools

– Explore capabilities and limitations
of Altair

• T2: Geometric Map Visualization (Jocelyn
- 6 hours)

– Visualize the world map

– Link database with the application

– Implement choropleth maps to ex-
plore compatibility of the geo-
graphic data and COVID-19 datasets

Oct 31th T1: 6 hours each member
T2: Jocelyn - 6 hours

W4
(Nov 7th to Nov 13th)

• T1: Establish Necklace Algorithm Imple-
mentation (Minglong - 6 hours)

– Determine convex hull for necklace
shape

– Plot proportional symbols given our
dataset

Nov 7th T1: Minglong - 4 hours

W5
(Nov 14th to Nov 20th)

• T1: Write Project Updates (Nov 16 3pm)
(all members - 4 hours each)

– Discuss feedback

– Reevaluate scope of the project

• Peer Reviews (Nov 17 in class)

Nov 14th T1: 4 hours each member

https://ourworldindata.org/covid-stringency-index
https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-vaccinations

Weeks Task and Description Starting Data Actual Hour Spent

W6
(Nov 21st to Nov 27th)

• Post-update Meetings (Nov 24 & other
times that week TBD)

• T1: Modification Based on Comments (all
members - 1 hours each)

– Make necessary modifications and
adjust plans based on reviews from
the class and the comments from the
meeting

• T2: Complete Necklace Algorithm Imple-
mentation (all members - 6 hours each)

– Hard code pre-defined clusters of
countries

– Draw necklaces for each cluster and
dataset

Nov 21st T1: 1 hour each member
T2: 3 hours each member

W7
(Nov 28th to Dec 4th)

• T1: Advanced Features (all members - 6
hours each)

– Design and implement automatic
generation of the necklaces

– Enable user interaction to select
countries and datasets

Nov 28th T1: 4 hours each member

W8
(Dec 5th to Dec 11th)

• T1: Advanced Features Cont. (all mem-
bers - 6 hours each)

– Finish up previous features

– Implement country search bar if time
allows

Dec 5th T1: 10 hour each member

W9
(Dec 12th to Dec 17th)

• Final code base testing and debugging

• Pre-recording the final presentation

• Final Presentation (Dec 15 2-6pm)

• Final Paper (Dec 17 8pm)

Dec 13th 5 hours each member

	Introduction
	Related Work
	Data and Task Abstraction
	Datasets
	Tasks

	Scope
	Interactive Environment
	Dynamic Necklace Generation
	Multiple-necklace Display

	Implementation
	Necklace Map Generation
	Language and Packages
	Retrieving Data
	Necklace Generation
	Marker Size
	Marker Placement

	User Interaction

	Results
	Milestones
	Discussion and Future Work
	Lessons Learned
	Future work

	Conclusion
	Milestones

