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Abstract

There are many music streaming platforms but Spotify has
dominated the market and is currently the largest one with
millions of users. Spotify collects huge amounts of data
from their users on a daily basis which allows for a great re-
search opportunities in the data science community. There
are very limited attempts that have been published on the
topic of visualizing Spotify streaming history which inspired
this project. We introduce Explorify: a personalized inter-
active visualization tool for Spotify listening history. Ex-
plorify offers a plethora of interactive visualizations that
help Spotify users explore their own music taste, patterns
and enjoy the interaction with their own data.

1. Introduction

Spotify1 is the largest music streaming platform with mil-
lions of users. Spotify has revolutionized music discovery
by collecting streaming data from their users and apply-
ing modern neural algorithms for their music recommenda-
tions. In addition, Spotify provides information and audio
features for each track and artist on the platform which is
easily retrievable through their API2. Users are even able
to request their own personal data including streaming his-
tory, playlists, top artists and others3. While there are a
lot of visualization attempts for Spotify data on the Internet
they are relatively simple and do not have interactive com-
ponents. In this project we propose a novel visualization
platform for personalized music streaming history provided
by Spotify called Explorify. The main goal of Explorify
is to allow users to visualize in an interactive manner their
personal streaming history and discover patterns for their
music taste.

1https://spotify.com
2https://developer.spotify.com/documentation/web-api/
3https://support.spotify.com/us/article/gdpr-article-15-information/

2. Related Work

Few publications about attempts at visualizing the listen-
ing history of Spotify users exist. More work exists on the
topic of visualizing the listening histories of users of the
Last.fm4 platform, a service with very similar offerings to
that of Spotify. There are differences in what data the two
platforms make available, but they are mostly minor, and
the semantics remain largely the same. In discussing these
works, we will usually make no distinction between what
platform the work relies on, as it (in most cases) is immate-
rial to the work.

The published works within this area can be divided into
two groups, based on their main goal. The first group’s goal
is to help the user discover new music. The papers targeting
this goal seek to create tools that reveal tracks, artists and
genres that were previously unknown but are believed to be
enjoyable to the user. Usually, this is achieved by allowing
the user to explore and traverse networks of similar artists
in search of undiscovered ones [1, 2]. Several tools that use
this approach are available on the Internet. To name a few:
LivePlasma5, MusicRoamer6, Music-graph7, Music-map8.

The goal of the second group is to reveal trends and facts
about the user’s listening history, supporting the user in in-
trospection about their own listening habits. These tools all
visualize the user’s listening history in one or more ways,
and support various means of interaction such as adjusting
the granularity of what is shown [3, 4, 5]. Another tool,
LastHistory, attempts to make this presentation more mean-
ingful to the user by augmenting the listening history with
contextual information from other data sources, such as per-
sonal phots and calendar entries [6].

In a recently published work, Wirfs-Brock et al. explore
how these goals can be combined, enhancing music explo-

4https://last.fm
5https://liveplasma.com/
6https://musicroamer.com/
7https://music-graph.xyz/
8https://music-map.com/
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ration by giving the user deeper insight into their own lis-
tening history and listening patterns [7].

While Explorify falls into the second group, we hope that
our solution will facilitate discovery by piquing the user’s
interest and deepening their insight into their own music
preferences in a way that will inspire exploration.

3. Dataset
There are a total of three streaming history datasets SH J,
SH D and SH K obtained from users J, D and K re-
spectively, that were used during the development of Ex-
plorify. Each dataset is a timeseries dataset and comprises
the streaming history for a user over one year period, in json
format. Each item of the datasets contains:

• trackName: unique sting for each track, categorical
data

• artistName: unique artist for the track, categorical
data

• msPlayed: integer describing for how long the user
has listened to the track in milliseconds, quantitative
sequential data

• endTime: a timestamp describing the exact time at
which the user stopped listening to the track, quantita-
tive sequential data

A summary of dataset cardinalities is provided in Table 1.

Total Tracks Unique
Tracks

Unique
ArtistsSkipped Not Skipped

SH J 1126 6887 4272 1598
SH D 1919 3570 1428 375
SH K 1862 1711 1451 818

Table 1. Datasets overview for each user J, D and K. Skipped
tracks are ones that are played for less than 10 seconds.

By retrieving information from the Spotify API, the raw
datasets are further processed to extract detailed informa-
tion for each track and the corresponding artists and al-
bum. Data processing libraries such as numpy, pandas
and sklearn are used for the computations. Examples of
additional information provided by the Spotify API include:

• Track audio features which are all quantitative sequen-
tial data with different ranges:

1. danceability
2. valence
3. energy
4. tempo
5. loudness

6. speechiness

7. instrumentalness

8. liveness

9. acousticness

• Genres associated with the artist: categorical data;
• Related artists of an artist: Artists which listeners of

the current artists are likely to enjoy as well;
• Popularity score of the artist: ordinal data in the range

[0, 100];
• Number of followers the artist has: quantitative se-

quential data;

Dataset availability is both static and dynamic. The static
part is the streaming history provided by the user. The dy-
namic part is the prepossessing of the raw user data and the
additional features fetched through the Spotify API.

4. Data and Task Abstractions
There are a total of 5 tasks we will be visualizing

within the Explorify platform: Artist-Genre Network,
Track Clustering by Audio Features, Artists Stream-
graph, Top Artist Over Time and Daily Listening Pat-
tern. While we wish to facilitate all of these tasks with Ex-
plorify, there are some which are more important than oth-
ers. In particular, we will prioritize the artist-genre network
and daily listening pattern tasks. The streamgraph and track
clustering tasks on the other hand will only be implemented
if we are happy with the implementation of the other tasks.

4.1. Artist-Genre Network

Spotify users often want to explore the relationships be-
tween the artists they listen to the most. They may want to
know how genre connects and differentiates the artists they
listen to and in particular to identify which genres connect
two artists and how other genres belonging to only one artist
make the pair differ. This task aims to allow the users to
explore those relationships in an interactive way by visual-
izing the artist-genre network. Our hypothesis is that artists
connected by genres will not be associated with other com-
pletely different genres. To verify this hypothesis, the user
needs to consume the network graph and discover patterns
and abnormalities.

Both genre and artist are categorical attributes. The car-
dinality of the artist data is shown in Table 1. The cardinal-
ity of the genre attribute ranges between 249 and 1049 with
the different datasets. Each artist has a number of associated
genres, linking the two attributes. This makes it possible to
construct networks where artists are vertexes and genres are
edges or the other way around. In one dataset, SH J, each
artist has 4.5 genres on average, and each genre links 6.5
artists on average. This means that the degree of connec-
tivity in the network is quite high. Because the number of
artists in each dataset can be in the order of thousands, we
will be performing a filtering reduction, limiting the visu-
alization to displaying only the user’s top 100 artists. This
will help achieve a meaningful visualization while avoiding
the hairball issue [8]. In terms of abstract definition, this
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task explores the connectivity, and lack thereof, of nodes
within a network.

4.1.1 Calendar-heatmap connectivity

The user can aid their search and/or browsing of the network
by selecting days in the heatmap calendar (see Section 4.5).
This action will highlight the artists which were streamed
on the selected day in the artist-genre network.

4.2. Track Clustering by Audio Features

Spotify users have different listening patterns and they
might listen to a variety of music styles. The goal of the
second task is to allow the user to explore their music taste
preferences and discover patterns by clustering user tracks
according to the audio features. Questions this particular
task aims to answer are:

• Which tracks are similar according to their audio fea-
tures?

• What is the predominant genre within a cluster and is
there a distinct winner?

There are a total of 9 audio features attributes for each
track (see Sectiton 3). All these features are ordered quan-
titative sequential data. Each track is represented in a high
dimensional space with its audio feature vector. Each track
is further assigned a list of genres. There is a 1 to Many re-
lationship between the track and the associated genres. The
genre attribute is a categorical data. To obtain the data for
this visualization, we first cluster the tracks into high di-
mensional space and then derive a representation into 2D
space for each datapoint. We will use all tracks for this vi-
sualization to obtain reasonable results for the clustering.
The cardinally of the track data is described in Table 1. Our
hypothesis is that tracks with similar audio features will be
mapped close together in the low dimensional space and
will have similar genres assign to them. In terms of abstract
definition, the task explores relationships between high di-
mensional data points within assigned cluster and searches
for patterns.

4.3. Artist Streams Time-Series

In the third task, we wish to let the user explore the evolu-
tion of their listening patterns for the duration of their re-
trieved history. The goal is to allow the user to discover
events such as when they first started listening to an artist,
and patterns such as how the user’s interest in an artist
changed over time. We also wish to make it easy for the
user to discover which artists they streamed the most, as
well as the absolute number of streams at any point in time.
The data used for this task will be the following:

• Artist id: categorical. Cardinality is documented in
Table 1.

• Artist name: categorical. Same cardinality as artist id
• Timestamp: quantitative, sequential, hierarchical. Car-

dinality: 1 year, accurate down to the second.

Each data set covers around one year of a user’s listening
history, with the streams roughly spread evenly throughout
the period. It follows that the range of the timestamp data is
a single year. Because the timestamps are accurate down to
the second, some aggregation will have to be performed so
that items can be grouped together by temporal closeness.
Grouping the items on a set number of days, like 5 or 7 will
yield a good number of groups, being granular enough to
reveal real detail without being so fine-grained that overar-
ching patterns are hard to discern. There are no levels in the
categorical data. Artist id should map 1-1 to artist name,
though artist id will be used internally in the system to be
safe.

As the cardinality of the the artist id attribute is very
high in some of the data sets, we will be performing
a filtering reduction. Only the 150 (or thereabouts)
most popular artists will be included in the visualization.

For this task the data will be structured in the fol-
lowing way: For each set time-interval, every artist in the
data set will be associated with the number of times they
occur within that interval. One can then visualize, for each
interval, the absolute or relative number of streams each
artist received.

4.4. Top Artists Over Time

Spotify users often search their top artists through the Spo-
tify platform. However, the visualization Spotify provides
is very limited because it provides the user’s top artist only
over the last 4 weeks, 6 months or entire history. This re-
stricts users to explore in details their most popular artists
for specific time period and to track the artists popularity
trends. The goal of this task is still to provide the user with
the most streamed artists over the period of their entire his-
tory and to also allow them to look up their top artists for
specific days. The data used for this task is very similar to
the one used in task three:

• artistName: categorical data. Cardinality is docu-
mented in Table 1.

• msPlayed: quantitative sequential data. Cardinality
is same as total tracks number and is documented in
Table 1.

• endTime: quantitative sequential data. Cardinality
is same as total tracks number and is documented in
Table 1.

To obtain the listening times for all artists we will be ag-
gregating the listening times (msPlayed attribute) for their
tracks over all and specific dates (the endTime attribute).
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Since the cardinality of the artist over all datasets is quite
high (in the hundreds to thousands) we will be performing
filtering reduction – only the top 20 artists will be displayed
at any time. To obtain the actual top 20 artist we will per-
form data reordering (sorting). In terms of abstract defini-
tion, this task explores the distribution (interaction time) for
discrete data (the artists) over a period of time.

4.5. Daily Listening Pattern

The final fifth task is visualizing the daily Spotify usage of
a user. The goal of the task is to let users explore their daily
streaming history and discover interesting patterns. Ques-
tions this particular task aims to answer are:

• How music streaming routine changes over time?
• Which days observe the most listening hours?
• Is there spike usage for specific dates?

The data used for this task will be:

• msPlayed: quantitative sequential data. Cardinality
is same as total tracks number and is documented in
Table 1.

• endTime: quantitative sequential data. Cardinality
is same as total tracks number and is documented in
Table 1.

To retrieve the data needed for visualization of the task,
the listening interaction on a particular day are summed up
together (aggregated). This is a time series dataset so it’s
easy to aggregate tracks times by day. This results in a
new attribute streaming time that is ordered quantita-
tive sequential data. The cardinality of the resulting dataset
is 365 since the original datasets contain information over a
year and we aggregate that information by dates. In terms
of abstract definition, this task displays the distribution of
streaming time over days.

5. Solution
The work on the Explorify platform is performed using
Python and JavaScript with D3 [9] and React [10]. Python
is mainly used for data processing while JavaScript with D3
is used for creating the visualizations.

5.1. Artist-Genre Network: Force-Directed Graph
or Adjacency Matrix

Since the data to be visualized for task one (Section 4.1) is
a network type a total of two visualizations are considered:
adjacency matrix presentation and force-directed graph in-
spired by a paper on a similar visualization task [11]. The
preference is over the force-directed graph, however, de-
pending on the time constrains and challenges around the
implementation, we might end up with the simpler adja-
cency matrix. Whichever visualization we land on, we will
aim to be interactive.

In the force-directed graph each artist will be encoded by
a node and each genre connection by an edge. Since artists
could be assigned more than one genre some edges might
have higher ‘weight’. Therefore, the edge width will encode
the number of genres in common – the more the wider the
line. The colour channel can be used for highlighting some
connections of interests. To inspect specific artists the user
will be allowed to click on the artist (node) of interest and
compare to another artist that is a connection. A pop-up
display will show detailed information about the similarity
and difference in genres between the two artists. Current
progress of the implementation shown in Figure 1.

Figure 1. Artist-genre network visualization

An alternative to the force-directed graph is to create a
variation of an EdgeMap [12]. With this idiom, we would
have artists be nodes, and edges represent that two artists
were streamed during the same session, with edge thickness
being proportional to the number of session co-occurrences.
The timeline view will position artists by the data on which
they were first streamed. We are currently exploring this
possibility.

In the case of adjacency matrix each row and column
item will correspond to the unique artist. The values of the
cells in the matrix will display the number of genres in com-
mon between two artists. To encode the number of equal
genres the colour and hue channel will be used. We will
work with a single colour sequential colour map because
the number of genres in common is always a non-negative
number. To inspect a connection of interest, the user will be
allowed to click on specific cell. As with the force-directed
graph, a pop-up display will show the details.
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5.2. Track Clustering by Audio Features: Grouse-
Flocks or Bubbletree

For the track clustering task we consider experimenting
with two visualizations: a GrouseFlocks graph [8] visual-
ization which was inspired by a post on the Internet [13]
and a Bubbletree visualization inspired by another online
post []. First step is to partition the tracks into cluster ac-
cording to their audio features. For the GrouseFlocks visu-
alization we will use agglomerative (hierarchical) cluster-
ing. After applying the clustering algorithm we can con-
struct the GrouseFlocks graph. Each leaf node on the graph
represents a track. Tracks within a cluster are connected to
a node which can represents the genre distributions within
that cluster. The colour channel will encode the unique gen-
res which are categorical data. The connecting node will
represent a pie chart of the genres distribution. The bor-
der outline of the connecting node will be filled with the
colour representing the predominant genre for that cluster.
The user will be able to click on the nodes that connect the
tracks within a cluster and inspect further which tracks are
part of that cluster and what genres and audio features are
there.

For the Bubbletree (less complicated visualization) we
will use some sort of dimensionality reduction algorithm to
reduce the audio feature space. We will experiment with
the most famous ones like tSNE, PCA or UMAP. Each data
point on the graph represnets a track. Each cluster will con-
tain similar tracks and the colour channel will encode the
different clusters (all tracks within the same cluster will be
coloured with the same colour). Since we want to distin-
guish different clusters we will use qualitative colour scale.

5.3. Artist Streams Time-Series: Streamgraph

For the task of visualizing the artist streams time-series, we
imagine using the streamgraph idiom [8]. The overarching
concepts of a streamgraph are relatively simple, but there
are many details such as color scheme, ordering, labelling,
scale and angle that must be taken into consideration [14].
We are also considering adding some kind of interactiv-
ity to the graph. For example, upon selecting an artist in
the streamgraph, the streamgraph could morph into another
streamgraph showing streams of the tracks of the selected
artist through the user’s history.

5.4. Top Artists Over Time: Interactive Bar Chart

For this task we are considering an interactive bar chart.
This bar chart will display the top 20 streamed artists over
the period of their entire history and for specific days so a
total of 20 bars. The user can explore their most popular
artists for particular days by selecting days in the calendar
heatmamp (see Section 5.5). This action will highlight the
cell for the corresponding day in the calendar heatmap and

will then change the barchart to represent the most popular
artists for that day.

The barchart visualization is pretty standard. We will use
a horizontal barchart to fit the alignment of the rest of the
visualizations. We will use the position on common scale
channel to display the data. In addition, we will use the hue
channel to highlight specific artist on the barchart when the
user hovers over the bars. Current progress of the visualiza-
tion implementation is shown in Figure 2.

Figure 2. Barchart for top 20 artist

5.5. Daily Listening Pattern: Calendat Heatmap
Matrix

For this task a heatmap matrix was chosen to display
the listening patterns over time. The visualization is rela-
tively simple and was inspired by the famous visualization
for the number of commits per day by Github. There are
7 rows in total and each of them corresponds to the day of
the week. Each column of the matrix corresponds to the
week number (so a total of 52 weeks) but this will not be
displayed.Instead, the year and the month will be displayed
along the x axis as they are more descriptive. Since the
datasets contain data for each day over a year this visualiza-
tion will result in a total of 365 cells in the calendar heatmap
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correspnding to each day of the year. Each cell value corre-
sponds to the listening times in hours, minutes and seconds
on the particular day. We use the colour and hue channels
to encode the listening times on a particular day. The higher
the hue, the higher the interaction time on that day. Since
the values of each cell are quantitative sequential data with
positive range, a single colour sequential color map will be
used.

By aligning the streaming interaction in this way we can
clearly observe whether there are any patterns over a month,
week or specific days. The user will be able to hover over
the cells and a pop up will display the exact listening times
for that day. In addition, the user will be able to select par-
ticular days of interest which will also highlight the corre-
sponding data for that day in the rest of the visualizations.
Current progress of the implementation shown in Figure 3

6. Execution Timeline Milestones
The following timetable suggests a rough estimate with

milestones that aims to achieve the proposed objectives in a
total of 160 hours.

1. Familiarize ourselves with the dataset - 5 hours each
(10 hours total)

2. Familiarize ourselves with D3 - 7 hours each (14 hours
total)

3. Milestone 1: Create Daily Listening Pattern Heatmap
- Inna 5 hours

4. Milestone 1: Create Artists Stream-graph - Jonatan 7
hours

5. Milestone 2: Add interactivity for Daily Listening Pat-
tern Heatmap - Inna 5 hours

6. Milestone 2: Add interactivity for Artists Stream-
graph - Jonatan 5 hours

7. Milestone 3: Create Artist-Genre Network Graph -
Inna Jonatan 8 hours each (16h total)

8. Milestone 4: Add interactivity for Artist-Genre Net-
work Graph - Inna Jonatan 5 hours each (10h total)

9. Milestone 5: Create Top Artist Over Time Barchart -
Jonatan 7 hours

10. Milestone 5: Create Track Clustering by Audio Fea-
ture - Inna 6 hours

11. Milestone 6: Add interactivity for Top Artist Over
Time Barchart - Jonatan 7 hours

12. Milestone 6: Add interactivity for Track Clustering by
Audio Feature - Inna 6 hours

13. Milestone 7: Combine all visualizations together -
Inna Jonatan 10 hours each (20 total)

14. Final report - Inna Jonatan (10 hours)
15. Presentation and demo - 5 hours

Total of 133 hours. Left 27 hours to spare if something goes
wrong.

7. Results
A rough sketch of the Explorify platform shown in Figure
4.

8. Discussion

8.1. Limitations and Future Work

The Explorify platform could be extended to music stream-
ing histories from other platforms such as YouTube or
Last.fm. In addition, the Explorify platform could adopt
datasets from two or more users and display their similar-
ities and differences. Several people we have talked with
have expressed interest in such a feature. In his work on
Last.fm explorer, M. Pretzlav shows how this could be done
for the data of two users [3]

Our results can be no more accurate or detailed than the
data we receive from Spotify. For example, genres only
being registered to artists and not tracks hurts how granular
we can be in any analysis based on genre. In future work,
it could be interesting to use external data source such as
MusicBrainz or LastFM to find more granular genre data
and see if more interesting results could be found.
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