
Explorify: A Personalized Interactive Visualization Tool for Spotify
Listening History

Inna Ivanova
innai@cs.ubc.ca

University of British Columbia

Jonatan Engstad
jonatane@stud.ntnu.no

Norwegian University of Science and Technology

Fig. 1. Explorify: Opening page of the Explorify dashboard for personal data exploration

Abstract—There are many music streaming platforms but Spotify has dominated the market over the last few year and currently is the
largest one with millions of users. Spotify collects huge amounts of data from its users which presents a great amount of research
opportunities in the data science community. However, at the moment there are very limited attempts that have been published on
the topic of visualizing Spotify streaming history. The common curiosity of people about there own listening habits is the user story
which inspired this project. We implement an interactive dashboard for Spotify users with any level of expertise to perform exploratory,
consumption, and analysis tasks on their personal Spotify streaming data. The interactive and playful nature of the dashboard aids
Spotify users to explore their own music taste, find listening patterns and engage with their data.

Index Terms—Explorify, Spotify, dashboard, streaming history

1 INTRODUCTION

Spotify1 is without a doubt the largest music streaming platform which
servers millions of users on a daily basis. Spotify has revolutionized
music discovery by collecting streaming data from its users and apply-
ing modern neural network algorithms to provide personalized music
recommendations. In 2017 Spotify launched a marketing campaign
called ‘Spotify Wrapped’ which lets Spotify users relive their musical
discoveries and check their total time spent on the platform in the form
of a short report card. The campaign has proved to be very successful
in engaging more user and for longer times in addition to becoming
one of the signature features of the platform. While the report cards
are experiencing great design style they still have a major shortcoming
in supplying Spotify users with a detailed and interactive view of their
streaming history and listening patterns.

Luckily, Spotify users can obtain their streaming data through the
platform if they wish to. In addition, Spotify provides information and
audio features for each track and artist on the platform which is easily

1https://spotify.com

retrievable through their API2. Users are even able to request details
including streaming history, playlists, top artists and others3. While
there are a lot of visualization attempts for Spotify data on the Internet
they are relatively simple and do not have interactive components.

With this gap in the field and easy access to streaming history data,
we have embraced the opportunity to develop our own platform. We
called it Explorify and it targets the current visualization limitations
with Spotify streaming histories. Explorify requires no expert knowl-
edge from its user to perform exploratory, consumption and analysis
tasks on their own personal streaming data.

This paper introduces Explorify as a novel visualization platform for
personal music streaming history provided by Spotify. It also illustrates
how the built-in tools and visualisations allow users to understand their
personal streaming history. By creating an interactive and customizable
solution, we hope that users will be able to explore their streaming
histories in a manner that they find interesting and rewarding and that
they are able to discover patterns and trends that they are not aware of.

Explorify does not require programming knowledge and we believe
that its simple and intuitive interface makes it easy to use. Through the
main view and the three supporting views, users will be able to select

2https://developer.spotify.com/documentation/web-api/
3https://support.spotify.com/us/article/gdpr-article-15-information/



and examine their streaming activity for specific days and times of
day, as well as the relationships between the artists that they streamed
and the genres of the artists. Through a control panel, users can select
which attributes of the artists they wish to inspect and/or compare.
Explorify’s views are highly integrated so that complex results can by
achieved through simple intuitive interactions. We believe that this
level of integration has made the user experience more intuitive and
interaction simpler for the end user.

Explorify makes use of standard visualization techniques, but also
provides more sophisticated visualizations such as edgemaps [6], that
encourage users to actively interact with their own data. While these
sophisticated visualizations may be unfamiliar to the user, they are
powerful enough that their choice is warranted. Interaction with Ex-
plorify cannot make any permanent changes to the user’s data, and
reloading the page will instantly reset all visualization back to their
starting configurations. Thus the user will be able to safely familiarize
themselves with Explorify and learn to exploit the interface to address
their needs.

In section 2 we look at previously published visualisation of stream-
ing history specifically and also of other connected multidimensional
datasets. In section 3 we describe the reference datasets which have
been used to develop the platform and their various parameters which
are also available in a typical user data. In section 4 we define several
typical tasks which can be accomplished using the dataset and associ-
ated questions to answer. In section 5 we explain the various elements
of Explorify and how they are used, while in section 6 we discuss
implementation architecture and details. Section 7 shows the historical
timeline of the project. In section 8 we showcase Explorify with the
reference dataset. Section 9 contains a discussion of the strengths and
limitations of the platform, as well as next steps and a reflection on the
project. Finally section 10 concludes the paper.

2 RELATED WORK

2.1 Visualizing Music Streaming History
So far only a few publications have attempted to visualize listening
history provided by the Spotify platform. Paradoxically, there exists
more work on the topic of visualizing the listening history of Last.fm4

users: a platform with very similar service offering to that of Spotify
but only a fraction of users. There are some minor differences in the
available data provided by the two platforms and the semantics remain
largely the same. In discussing these works, we will usually make no
distinction between which platform the work relies on since it generally
does not affect the result.

The published works for this particular area can be divided into
two groups based on their main goal. The goal of the first group
is to help user discover new music. Papers targeting this goal seek
to create tools that reveal new tracks, artists, and genres previously
unknown but strongly believed to be enjoyable to the user. Usually,
this is achieved by providing the user with tools to explore and traverse
multiple networks of similar artists in search of undiscovered ones
[4, 7]. Several tools that use this approach are available on the Internet.
To name a few: LivePlasma5, MusicRoamer6, Music-graph7, Music-
map8. As examples we have included figures ?? and 3, which show the
Liveplasma and Music-graph websites, respectively.

The goal of the second group is to reveal trends and facts about the
user’s listening history while also support the user in introspection about
their own listening habits. The tools built with this goal in mind all
visualize the user’s listening history with a greater focus on the temporal
aspect of the data than those of the first group. Furthermore, they
support various means of interaction such as adjusting the granularity
of the data being shown [1, 5, 10], or allowing for the comparison of
two datasets [10]. Another tool, LastHistory, attempts to make this
presentation more meaningful to the user by augmenting the listening

4https://last.fm
5https://liveplasma.com/
6https://musicroamer.com/
7https://music-graph.xyz/
8https://music-map.com/

history with contextual information from other data sources such as
personal photos and calendar entries [2].

In a recently published work, Wirfs-Brock et al. explore how these
goals can be combined in order to enhance music exploration and give
the user deeper insight into their own listening history and listening
patterns [11]. While the goal of this work was to research how a future
voice assistant might use a persons listening history to offer better help,
several participants expressed joy and engagement when presented
with, and while exploring, summaries of their personal Spotify data.

While Explorify falls into the second group, we hope that our so-
lution will facilitate discovery by piquing the interest of the user and
deepening their insight into their own music preferences in a way that
will inspire exploration.

Fig. 2. The liveplasma website after a query has been made for the band
”Arcade fire”

Fig. 3. Music-graph.xyz as it looks for one of the authors when logged in
with their personal Spotify account.

2.2 Visualizing Explicit and Implicit Connections in Multidi-
mensional Datasets

Dimensionality reduction (DR) is a common attribute aggregation tech-
nique for multidimensional datasets [8]. Generally speaking, DR allows
significant reduction in the number of attributes needed to represent a
dataset while still retaining semantic meaning. One of the most popular
algorithms that achieve good DR results is t-Distributed Stochastic
Neighbor Embedding (t-SNE). It is an unsupervised machine learning
algorithm for nonlinear dimensionality reduction that is based on the
distribution of the datapoints. The algorithm computes the probability
distribution of pairs of datapoints in the original high dimensional space.
Another probability distribution is then defined in a way that similar
(closely related) objects have high probability of being displayed close
to each other in the low dimensional map. This results in a low di-
mensional embedding that produces a similar distribution in the high
dimensional data making it prefect for discovering clusters of similar
artists and tracks solely based on their features.



Explorify’s main view is node-link diagram showing both explicit
and implicit relations. The inspiration for this view comes from the
work of Dörk et al.’s on EdgeMaps [6]. The edgemap idiom allows
for the visualization of both explicit relations, like specific connections
between items, and implicit relations, like items in a multidimensional
dataset having a high similarity measure. This is achieved through the
synthesis of spatialization techniques and graph-drawing techniques.
In example used by Dörk et al., a dataset of philosophers is used. In
the interest view, nodes (philosophers) are positioned by similarity,
but also connected by edges if they inspired or were inspired by each
other. In another view, the philosophers are positioned by their date
of birth along a temporal axis, while the edges stay the same. The
edgemap idiom also encourages interactive exploration by initially
hiding all edges in the node-link diagram, and then displaying only
those connected to the node highlighted by the user.

A common idiom for node-link network layouts is force-directed
placement [8]. In a common variant of this idiom, nodes are assigned a
repelling force, making them push away from each other so that they
do not overlap. We utilize this technique to position nodes in Explorify
in the cases where nodes end up overlapping in the DR result.

3 DATASET

There are a total of three streaming history datasets SH J, SH D and
SH K obtained from users J, D and K respectively, that were used
during the development of Explorify. Each dataset is a timeseries
dataset and comprises the streaming history for a user over one year
period, in JSON format. Each item of the datasets contains:

• trackName: unique sting for each track, categorical data
• artistName: unique artist for the track, categorical data
• msPlayed: integer describing for how long the user has listened

to the track in milliseconds, quantitative sequential data
• endTime: a timestamp describing the exact time at which the

user stopped listening to the track, quantitative sequential data

A summary of dataset cardinalities is provided in Table 1.

Total Tracks Unique
Tracks

Unique
Artists

Skipped Not Skipped

SH J 1126 6887 4272 1598
SH D 1919 3570 1428 375
SH K 1862 1711 1451 818

Table 1. Datasets overview for each user J, D and K. Skipped tracks are
ones that are played for less than 10 seconds.

The raw datasets are further extended with detailed information
for each track and the corresponding artists and album by querying
the Spotify API. Data processing libraries such as numpy, pandas
and sklearn are used for the computations. Examples of additional
information provided by the Spotify API include:

• Track audio features which are all quantitative sequential data
with different ranges:

1. danceability
2. valence
3. energy
4. tempo
5. loudness

6. speechiness

7. instrumentalness

8. liveness

9. acousticness

• Genres associated with the artist: categorical data;
• Related artists of an artist: Artists which listeners of the current

artists are likely to enjoy as well;

• Popularity score of the artist: ordinal data in the range [0, 100];
• Number of followers the artist has: quantitative sequential data;

Dataset availability is both static and dynamic. The static part is
the streaming history provided by the user. The dynamic part is the
prepossessing of the raw user data and the additional features fetched
through the Spotify API.

4 DATA AND TASK ABSTRACTIONS

While we do not assume our audience to have specialized knowledge
about specific genre categories or audio features we expect them to be
familiar with the concept of genres and that music artists are associ-
ated with them. In addition, we do not expect our audience to have
expert knowledge in interpreting complex visualizaions, however, we
anticipate that they will participate in tasks which target some form
of exploratory data analysis. Some tasks include observing listening
patterns and how they change over time, comparing top artists within
single views, locating artists across multiple views, and browsing rela-
tionships between artists.

In total, we have identified 4 different use cases that Explorify en-
ables: Discovering Artist and Genre Relationships, Locating and
Comparing Top Artists, Exploring Daily Listening Patterns and
Exploring Single Day Streaming Activity.

4.1 Discovering Artist and Genre Relationships
Spotify users often want to explore the relationships between the artists
they listen to the most as well as the relationships between artists and
genres in general. The user may want to know how genre connects
and differentiates artists. In particular, they may wish to identify which
genres connect two artists and how other genres belonging to only one
artist make the artists differ. Similarly, we believe that the user will be
interested in exploring how artists relate with respect to the auditive
qualities of their music. We also believe that the user wishes to explore
how their interest in genres and musical qualities has changed through
the period for which they have been subscribed to Spotify. The aim
of this task is to allow the users to explore these relationships in an
interactive fashion. By allowing the user to select which attributes of
the artists are used in the visualization, the user will be able to compare
and contrast the features that they are interested in. In consuming the
solution, the user will be able to spot patterns, outliers and abonrmalities
in the data, thus achieving this task.

We also wish to facilitate the user discovering when they first started
listening to an artist, and during which times they discovered more new
artists than normal.

Both genre and artist are categorical attributes. The cardinality of
the artist data is shown in Table 1. The cardinality of the genre attribute
ranges between 249 and 1049 with the different datasets. Each artist
has a number of associated genres, linking the two attributes. This
makes it possible to construct networks where artists are vertexes and
genres are edges or the other way around. In one dataset, SH J, each
artist has 4.5 genres on average, and each genre links 6.5 artists on
average. This means that the degree of connectivity in the network
is quite high. Because the number of artists in each dataset can be
in the order of thousands, we will be performing a filtering reduction,
limiting the visualization to displaying only the user’s top 100 artists.
This will help achieve a meaningful visualization while avoiding the
hairball issue [8]. In terms of abstract definition, this task explores the
connectivity, and lack thereof, of nodes within a network.

With each recorded stream, there is an associated date and time,
marking the exact point at which the stream ended. From this data,
we can produce a derived attribute, “firstStream”, which denotes, for
each artist, the first recorded instance of them being streamed by the
user. Using this derived attribute, we can order the artists by the date at
which the user first started listening to them (as far as we can tell using
the data).

There are a total of 9 audio features attributes for each track (see
Sect. 3), meaning that each track is represented in a high dimensional
space by its audio feature vector. All these features are quantitative
sequential data, though their ranges and cardinalities differ. For our



analysis, all audio feature values were scaled to fit a standard bell curve
centered around 0. The cardinally of the track data is described in
Table 1. By averaging over the feature vectors of all tracks belonging
to each artist, we were able to derive a feature vector describing the
mean musical quallities of every artist in the dataset. By employing
dimensionality reduction, we mapped these audio feature vectors into
a 2D space. Additionally, by encoding the genres of an artist using
one-hot-encoding, we obtain a vector in a —genres—-dimensional
space for each artist. As with the audio features, we perform DR to
map these feature vectors into 2D space.

Thus, we obtain three separate attributes to position every artist in
the dataset by: along a timeline axis using ”firstStream”, in a 2D space
using the mean aggregated audio feature vector and in a 2D space using
the aggregated genre feature vector.

4.2 Locating and Comparing Top Artists
Spotify users often search their top artists through the Spotify platform.
One use case we identify is locating and comparing top artist. This
use case will fall into the task abstraction of consuming, identifying
and comparing data. Current visualization that Spotify provides in this
regard is very limited: it summarizes the top artist of the user but only
over the last 4 weeks, 6 months or entire history. On the other hand,
Explorify aims to provide its user not only with the most streamed
artists for their entire history, but also allow them to look up their top
artists for specific days. The data used for this use case consists of:

• artistName: categorical data. Cardinality is documented in
Table 1.

• msPlayed: quantitative sequential data. Cardinality is same as
total tracks number and is documented in Table 1.

• endTime: quantitative sequential data. Cardinality is same as
total tracks number and is documented in Table 1.

To obtain the listening times for each artist we aggregate the listening
times (msPlayed attribute) for their tracks overall and on specific
dates (the endTime attribute). Since the cardinality of the artist over
all datasets is quite high (in the hundreds to thousands) we will be
performing filtering reduction – only the top 20 artists will be displayed
at any time. To obtain the actual top 20 artist we will perform data
reordering (sorting). In terms of abstract definition, this task explores
the distribution (interaction time) for discrete data (the artists) over a
period of time.

4.3 Exploring Daily Listening Pattern
The third use case scenario is concerned with the task of exploring the
daily Spotify usage of a user. Users may wish to have a summarized
view of their entire listening activity and identify patterns or abnormali-
ties. The goal of the task is to let users explore their daily streaming
history and discover interesting patterns. Questions this particular task
aims to answer are:

• How music streaming routine changes over time?
• Which days observe the most listening hours?
• Is there spike usage for specific dates?

The data used for this task will be:

• msPlayed: quantitative sequential data. Cardinality is same as
total tracks number and is documented in Table 1.

• endTime: quantitative sequential data. Cardinality is same as
total tracks number and is documented in Table 1.

To retrieve the data needed for visualization of the task, the listening
interaction on a particular day are summed up together (aggregated).
This is a time series dataset so it’s easy to aggregate tracks times by
day. This results in a new attribute streaming time that is ordered
quantitative sequential data. The cardinality of the resulting dataset is
365 since the original datasets contain information over a year and we
aggregate that information by dates.

4.4 Exploring Single Day Streaming Activity
While exploring daily listening patterns helps the user understand their
overall activity on the Spotify platform, users may also want to exam-
ine their streaming sessions for specific days. Therefore, we identify
another use case scenario where users wish to explore and navigate
throughout daily activity sessions. The data used for this task will be:

• msPlayed: quantitative sequential data. Cardinality is same as
total tracks number and is documented in Table 1.

• endTime: quantitative sequential data. Cardinality is same as
total tracks number and is documented in Table 1.

• artistName: categorical data. Cardinality is documented in
Table 1.

To retrieve the data needed for the this use case scenario, the listening
interactions on a particular day are summed up together (aggregated).
However, the aggregation happens in a manner which groups together
consecutive streaming sessions where the user has listened to the same
artist.

5 SOLUTION

The Explorify platform consists of two parts: the preprocessing
pipeline and the Explorify dashboard. The Explorify dashboard con-
tains all of the visualizations in our solution and it is the focus in this
section.

The Explorify dashboard consists of 4 views, with the centerpiece,
or the main view, being the artist-genre network. The artist-genre
network is intended to be the main vehicle for exploration, while the
remaining views complement it by making available supplementary
information and interactions. To the right of the artist-genre network is
the top artists bar chart, while below the artist-genre network, we have
placed the calendar heatmap which shows streaming activity across the
recorded period with daily granularity. While there are four views in
total, only three are initially visible to the user. Selecting a day in the
heatmap displays the fourth view below the calendar heatmap which
describes the streaming timeline fr the selected day.

5.1 Artist-Genre Network
The requirements of use case 1 (see section 4.1) are very broad

so we considered many visualizations for it. To satisfy them, we
prioritized being able to display both artists and genres at once, while
also highlighting how the two are connected. For this, we settled on a
node-link network visualization [8], where nodes represent artists and
edges represent the genres that the incident nodes have in common (no
edge exist if the intersection is the empty set). Force-directed placement
[8] was used to position the nodes, with nodes being given a repelling
force and edges constituting an attracting force. This visualization
turned out insufficient on its own: the many shared genres resulted
in massive hairballs, and interactivity and support of exploration was
limited. We decided to expand on the node-link network, settling on
the edgemap idiom [6].

5.1.1 The Artist-Genre Edgemap
The final edgemap-implementation consists of two parts: the main
edgemap view, and a control panel for customizing the edgemap pa-
rameters. In addition, the edgemap implementation features several
connections to the remaining views. This is explained in more detail in
the sections of those respective views. The control panel controls four
variables relating to the edgemap: which attribute to position the nodes
by, which attribute to color the nodes by, how many nodes to display
(upper limit) and whether to display node labels. The edgemap view,
as well as the edgemap control panel (on the left) can be seen Figure 1.

5.1.2 Nodes and Transitions
Explorify offers three options regarding to positioning of the nodes
based on three different attributes we define as: the derived ”firstStream”
attribute (which we will call the ”timeline position”), the result of DR
over mean audio features (”feature position”) and the result of DR



over artist genres (”genre position”). If the user chooses the position
the nodes by their timeline position, a horizontal timeline axis will
appear in the middle of the edgemap’s viewport, making it easy to tell
for the user at which time they first listened to an artist. Upon the
user changing the selected position attribute in the control panel, an
animated transition will play. The transition shows the nodes moving
from their previous positions to their new positions, as dictated by the
selected position attribute. This helps the user maintain a sense of
context, and relieves them of the cognitive load of having to re-locate
the nodes they were tracking [8].

5.1.3 A Partial Force-Directed Layout
Due to the limited space offered by the edgemap viewport, as well as
the limitations and inherent properties of the data as well as the DR
techniques applied, some nodes end up overlapping in the edgemap.
This can cause partial or complete occlusion of nodes, and the visu-
alizations interactivity and clarity suffers as a result. To avoid this
issue, force-directed placement is employed, with nodes repelling each
other when in close proximity. This prevents the drawn nodes from
overlapping, though it does come at some cost. First, the proximity of
nodes with similarity gets limited. Two nodes with very high similarity
will appear with some minimum distance between them, as enforced
by the simulation. The similarity between these two nodes and another
pair whose nodes are positioned naturally at this distance due to being
less similar will appear identical to user. This effect if worsened by
clusters of very similar nodes, where the distance across the cluster may
be much greater than what the similarity of the nodes would entail. An-
other drawback to the force-directed placement solution is that it causes
some visual artifacts each time the the user changes the positional at-
tribute of the edgemap. This happens due to the dynamic nature of the
solution, and the fact that transitions use as destination the coordinates
given by the dimensionality reduction. At the end of a transition, nodes
may appear overlapping each other, before the simulation kicks in and
re-positions them. While this does cause visual clutter, we also believe
that it helps the user understand the nature of the positions and the
simulation since the nodes are first displayed in their original position,
and only after the simulation moves them to their final positions. We
feel that the gains from the visual clarity and interactivity would make
up for its drawbacks. In the case of the timeline axis, the force-directed
layout simulation will only place nodes further up or down along the
vertical axis, while keeping nodes’ horizontal position constant. This
allows us to avoid nodes overlapping, while still keeping nodes at their
correct position with respect to the timeline axis.

5.1.4 Color
In [6], nodes are colored by their polar coordinates in edgemap: sat-
uration is proportional to the node’s distance from the centre, while
the node’s hue is given by its angle relative to the centre. Whereas the
referenced edgemap implementation uses static colors for the nodes,
Explorify allows the user to customize which attribute to color the
nodes by. This makes the nodes’ position and color independent from
each other, and allows the user to juxtapose two attributes, by assigning
node color the first attribute and and node position to the second. This
is demonstrated in figure Fig. 4. As Explorify only shows outgoing
edges, all edges are given the color of their target node.

5.1.5 Edges
In the work of [6], edges are kept hidden until a selection occurs, at
which point all edges incident to the highlighted nodes are shown. Our
implementation works in a very similar fashion, with the exception
that only outgoing edges of the selected node are shown. Edges in the
Explorify’s edgemap are directed. An edge represents the genres shared
by two artists, a relation which is commutative. Therefore all edges
come in pairs, if an edge from node1 to node2 exists, an edge from
node2 to node1 will also exist. The difference between these edges lies
in the degree of overlap between the genres of the two artists, a relation
which is not necessarily commutative. As we experimented with using
non-commutative measures of overlap, it was decided to keep edges
directed and separate. The appearance of edges in the our edgemap

implementation is influenced by two run-time calculated attributes:
proportion of genre overlap, and size of genre overlap. The higher the
number of genres two artists share, the thicker the edges connecting
them will be. In addition, lightness channel of the edge encodes the
proportion of genres that the two artists share, with edges that connect
artists with the exact same set of genres being completely white.

5.1.6 Highlighting
Explorify’s edgemap nodes support direct interactions: Upon hovering
the cursor over a node, the a label showing the artist’s name will
be superimposed on top of the node. When the user selects a node,
the node, along with its neighbors, (connected by outgoing edges) is
highlighted. This is shown in Fig. 6. When a node is selected it’s fill
color becomes transparent, and it is given a thick border, making it
visually distinct from every other node. The selected node’s neighbors
keep their colors as they were before any node was selected. The
remaining nodes are all given the same anonymous-looking color so
they blend in more with the background. They also have their labels
hidden, if they were being displayed. All edges originating at the
selected node are made visible. The visualization will still respond to
hovering as before. The user may click on the background to cancel
the highlighting, or on any other node to change which node (and set
of neighbors) is highlighted. The user may also hover over visible
edges to have a list of all genres in the edge be superimposed on top
the visualization.

During the transition that plays when node positional attribute is
changed by the user, as well as the ensuing re-positioning by the force-
directed placement simulation, edges and labels are hidden from view
to reduce visual clutter. Node color highlights are kept the same. This
again aids the user in tracking the changes in position, often heavily
reducing the number of nodes that the user must keep track of during
the transition. Since the nodes stay highlighted after the transition ends,
the user can quickly and easily identify their new positions.

5.1.7 Labelling
By default, labels showing their respective artists’ names are superim-
posed on top of the nodes. To avoid labels overlapping and ruining
readability, a simplified version of the approach used by [9] is em-
ployed. The same approach is used to add labels to edges. Edges are
labeled with the genres which their incident artists share, as shown in
Fig. 7. Due to the edge labels running along curved paths, most of
which are oblique, the edge labels often end up with huge bounding
boxes. The result is that the edgemap ends up being very conservative
with how many edge labels are made visible, so edge labels are not
very prominent in the resulting visualization.

5.1.8 Other features
The edgemap encodes the how much time the user spent streaming the
artists’ music through the size channel of nodes. The size of a node is
linearly proportional to the amount of time they were streamed, on a
scale from the least streamed artist to the most streamed artist. Using
the control panel, the user may also control the maximum number of
nodes drawn by the edgemap. As the user adjusts this number, nodes
will pop into and out of view depending on if the number is being
adjusted up or down respectively. If a node is highlighted during this
process, added nodes and edges will be styled according to the rules
of highlighting explained earlier. Which set of artist the nodes are
drawn from depends on user input to the calendar heatmap view, but by
default it is the set of all artists for which we were able to retrieve data.
Because adding and removing nodes is relatively expensive operation,
the input is debounced and the sum of changes is applied after a small
amount of time has passed. If the user decides to add 20 nodes by
repeatedly adding one node at a time in very rapid succession, this
technique allows us to add all 20 nodes to the edgemap at once instead
of redrawing and re-simulating the graph 20 separate times.

A final feature of the edgemap is what we call the ”autoplay” feature.
This feature is simply the edgemap automatically cycling through a



Fig. 4. The edgemap with nodes positioned by genre, but with color attribute varying. The color attributes, from left to right, are: audio feature, genre,
timeline.

Fig. 5. The edgemap with the artist ”Jesca Hoop” highlighted and labels
enabled.

number of states with a short pause in between each change. These
states are simply the product of all the options controllable from the
control panel, with the number option being either 50, 100 or 150. This
feature can be enabled as disabled by the user at any time by pressing
the play or pause button (respectively) in the upper left corner of the
edgemap view. As the state of the edgemap changes, the edgemap con-
trol panel UI widgets change as well, reflecting the new configuration
of the edgemap. While this feature offers little additional functional-
ity, we have found it useful in demonstrating the the capabilities of
Explorify. We hope that it will also help users the possibilities that the
edgemap control panels offers by demonstrating the range of possible
configurations.

5.1.9 Top Artists Bar Chart Connectivity
If the artist selected (to be highlighted) by the user is also present in
the bar chart, the bar of corresponding to that artist will be highlighted
as well. If the user cancels the highlighting, the corresponding bar will
also lose its highlighting.

5.2 Locating and Comparing Top Artists: Interactive Bar
Chart

To address the task in Sect. 5.2 we are considering an interactive bar
chart shown in Fig. 8. We use a horizontal bar chart to fit the alignment
of the rest of the views in the Explorify dashboard. We use the position
on common scale channel to display the data and the hue channel to
highlight specific artist on the bar chart. The bar chart displays the
top twenty artists of the user over the period of their entire hist ory or
for specific days. This visualization results in a total of twenty bars
maximum displayed at once (some days may have less than twenty
artist). We complement the bar chart visualization by allowing three
distinct actions to be performed on it: sorting, hover and selection.

There are three buttons positioned on top of the bar chart that define
the sorting criteria of the displayed artists. The user can perform click

Fig. 6. Edgemap: highlighted nodes in the middle of a transition

Fig. 7. Two edges in the edgemap, one labelled with the connect artists’
shared genres, the other missing labels.

operation on each of the buttons which will result in a transition of the
barchart. In addition, the user can hover over individual bars which will
display a pop-up display with detailed information about the listening
times for the artist. The user can further select an artist of interest by
clicking on the bar item which in turn will highlight the selected artist
by changing the bar colour.

Since the barchart is interconnected to the Artist-Genre Network
a selection operation on the bar chart will result in highlighting the
node of the selected artist in the Artist-Genre Network visualization
(see section 5.1 for details). The bar chart is further interconnected to
the Calendar Heatmap: if the user wish to explore their most popular
artists for a particular day they can perform a selection operation in the
heatmap which will derive a new view of the bar chart with the relevant
data.

5.3 Exploring Daily Listening Pattern: Calendar Heatmap
The interactive calendar heatmap shown in Fig. 9 is the solution to
the the task described in section 4.3. The visualization for the task of



Fig. 8. All three different views of the interactive barchart. On the right the barchart is sorted by the streaming time of each artist. In the middle,
the barchart is sorted by the artitst popularity scores. In addition, a selection action has been performed which highlighted (changed the colour of)
the bar item for the selected artist. On the left, the barchart is sorted by the names of the displayed artists. In addition, the hover action has been
displayed which triggers a pop-up display with details about the artist.

exploring daily listening patterns was inspired by the famous calendar
heatmap which records the activity rates on Github. We have chosen this
particular visualization due to its simple and easy-to-interpret design.
There are a total of 7 rows in the heatmap and each of them is labeled
for the corresponding day of the week. The columns of the heatmap
suggest the week number in a year (a total of 52 weeks). However,
instead of displaying the week number we have decided to display
a month label since it is more descriptive. The dataset used for this
visualization contain information for each day over the course of a year
which results in a total of 365 cells displayed in the calendar heatmap.

Each cell value holds data for the daily activity time on the Spotify
platform converted into hours, minutes and seconds. We use the colour
and saturation channels to encode the listening times for each day. A
higher saturation value suggest higher interaction times. Since the
values for each cell are quantitative sequential data with positive range,
a single colour sequential color map is used for the mapping.

By aligning the streaming interactions in this manner the visualiza-
tion prompts the users to discover and observe patterns over months,
weeks or days. To aid the visualization and the exploratory tasks we
implement additional functionality features that support user interac-
tions. The user can hover over the day cells which triggers a pop-up
display showing a short summarization of the listening times for that
day. In addition, the user can perform selection actions by clicking on
individual day cells. This results in highlighting the selected day cell
by changing its colors, and additionally it triggers multiple changes
in the rest of the visualizations. When a day is selected, the interac-

tive bar chart and the artist-genre network are filtered to display only
relevant information for that day: the bar chart displays top artists for
the selected day; the artist-genre network displays only artists played
on the selected day. Finally, additional gantt chart is displayed below
the heatmap map which provides a detailed overview of the streaming
sessions along with the times and artists on the selected day.

5.4 Exploring Daily Streaming Patterns: Gantt Chart
The visualization that provides solution to the task of exploring daily
streamline patterns is displayed in Fig. 10. We have chosen a gantt
chart because of its ability to provide an overview for the different
activity sessions throughout a day. We use the position on common
scale channel to display the different sessions throughout the day and
the colour channel to differentiate between different sessions and artists.
The gantt chart is using the colour scale from the artist-genre network
which allows users to recognize patterns in their listening history. For
example, consecutive sessions of similar colours could aid the user to
identify a preference for specific genre or artist type for that date. In
addition, the gantt chart supports the task of querying the displayed
data by implementing user interaction in the form of pop-up display
with session summarization when the user hovers over single session
items.

6 IMPLEMENTATION

The Explorify platform is implemented in Python and JavaScript with
D3 and React . Python is mainly used for data processing while



Fig. 9. Calendar Heatmap: the final implementation of the calendar heatmap. The heatmap supports hovering and selection for individual dates.

Fig. 10. Gantt chart: the final implementation of the gantt chart view. Individual items on the chart describe different sessions. In addition, the gantt
chart supports hovering over individual sessions which in turn displays details about the session.

JavaScript with D3 is used for creating the visualizations.
Explorify is implemented in two parts: a data processing pipeline

written in python, and the Explorify application itself, which is written
in a mix of Javascript and Typescript using React components for
structuring the code and D3 for creating the visualizations. Explorify
was built using Parcel9.

6.1 Preprocessing
Explorify’s preprocessing pipeline is built in python. The python li-
braries pandas and numpy are used to ease and speed up the data
processing. The preprocessing pipeline mainly consists of calls to the
Spotify web API to retrieve additional data to fill out the user’s stream-
ing history as well as joining the retrieved data to the existing data.
Some additional processing is performed to create derived attributes
and groupings of data items to reduce the need for data processing
inside the Explorify application. In addition, some dimensionality re-
duction is performed in order to calculate the artist positions used in
some configurations of the edgemap. For the DR and some of the more
advanced calculations, the python libraries Scikit-learn10 and Scipy11

were used. To ease the process of authenticating against the Spotify
API, and partly to ease the use of the API, the python library Spotipy12

was used.
The preprocessing pipeline has remained fairly constant throughout

the process of developing Explorify, having been developed early in
the process and being fairly robust to the change of plans that happened
about halfway through development.

6.2 Explorify
The initial plans for Explorify were very different from the final product.
As development began, focus was placed on developing a streamgraph
[3] and a calendar heatmap (similar to the one found in the final iteration
of Explorify). After receiving feedback on our plans, and brainstorming
for new ideas, we decided on creating an node-link network using
force-directed placement. This iteration of the artist-genre network
can be seen in Fig. 11. As development of this view was underway,
we encountered the edgemap idiom and were struck by how fitting it
was for the task we were trying to solve. After some consultation and

9https://parceljs.org/
10https://scikit-learn.org/stable/
11https://scipy.org/
12https://spotipy.readthedocs.io/en/2.19.0/

additional feedback, we decided to implement an edgemap with several
connected supporting views.

While initial development was all done in plain javascript and D3,
the decision to implement an edgemap also came with the realization
that we would be creating a dashboard with several connected views.
We chose to use React to divide the project into independent, but easily
connected components. React also carries the advantage of having
plugins for it that make it easy to style a webpage, as well as one
member of the team having some experience with it.

As implementing the edgemap turned out to be quite a large project
with many different objects and types being used throughout, it was
decided that it would be implemented using Typescript. This turned out
to be very beneficial to the implementation, as the project kept growing
in scope. The supporting views were all written in plain javascript.
Using React made it simple to compartmentalize code and divide the
views into separate files. This helped make the process of connecting
the views together quite simple.

7 EXECUTION TIMELINE

A breakdown of the execution timeline and distribution of work between
the group members is summarized in Sect. 10.

8 RESULTS

The final version of the Explorify platform is shown in Fig. 12. There
are a total of 4 different interactive and interconnected views corre-
sponding to the solutions described in section 5. Displayed in the top
left corner is the main view of the Explorify dashboard, namely the
‘Artist-Genre Network’. The view contains additional ‘Control Panel’
which allows the user to control the positioning, the colouring, and
the number of nodes in the ‘Artist-Genre Network’ edgemap. To the
right of the ‘Artist-Genre Network’ is displayed the ‘Top 20 Artist’
view containing the interactive bar chart and the sorting criteria buttons
explained in section 5.2. Another supporting view ‘Daily Listening Pat-
tern’ is displayed below main view. At the very bottom is positioned the
detailed ‘Detailed Listening History per Day’ view and it is displayed
only when a day is selected in the calendar heatmap matrix.

9 DISCUSSION

In this chapter we discuss the strengths of our final solution and
underlying implementation, and we identify the present limitations and
future directions of the project. We wrap up with project reflections
and some considerations for future work.



Fig. 11. An early iteration of the artist-genre network, before we decided
to make it more like an edgemap.

9.1 Strengths
We are very happy with having created something relatively unique –
we have not been able to identify any other tools that generate visualiza-
tions similar to that of Explorify for streaming history data. Looking at
previous literature, we believe there are unique contributions and ideas
contained in this paper, that may inspire others in their future work on
visualizing this type of data.

Another strength of Explorify is that it in our opinion is quite pretty.
While we created Explorify with functionality foremost in our minds,
we were also able to style it in a fashion that we find quite pleasing.
As good visualizations have both great function and great form [8],
we believe that this is only a good thing, and we believe that this will
strengthen the enjoyment that users get out of using Explorify.

Finally, we believe that a great strength of Explorify is the amount
of major and minor features we have been able to cram into it, without
it feeling over-encumbered and heavy to use. The various views are
semantically coherent and their functionality complementary. During
personal testing, we have found that exploring our own streaming his-
tories using Explorify has been fun and engaging, without ever feeling
confused or that too many options were available to us. Explorify offers
good interactivity and we are happy with the connectedness of its views.
Features like allowing artists to be selected and deselected in both the
the bar chart and the edgemap are quite simple, but we feel they add a
lot to the general usability and ”comfortability” of the tool.

9.2 Technical Challenges
One of the major challenges with implementing the edgemap was en-
countered when making the switch from plain Javascript to Typescript.
This was due to the philosophy of D3’s interface being incompatible
with Typescript. In specific, certain D3 functions, like the ones for cre-
ating a force-directed layout simulation mutate the nodes and links that
they receive into what Typescript views as completely different types,
taking the received object and adding new fields and mutating, in-place,
the types existing ones. This was actually part of the reason for the
switch to Typescript, as keeping track of when and where nodes and
links had been mutated by D3 and when and where they had not was
quite hard. But as it turns out, Typescript does not support this kind of
”type mutation” in any way or fashion. In the end the simplest solution

was to add nodes and links to the simulation as early as possible, so that
they could always be assumed to be mutated. The type annotations of
nodes and links correspond to this. This, in turn, has resulted in some
type errors that cannot be fixed, where the type inferencer is smart
enough to realize that the objects are not of the mutated type as we
claim they are.

Another challenge we encountered was debugging our visualiza-
tions. When a piece of code did have the expected result, or when the
visualization did something that we did not expect, figuring out where
the issue was, was at times quite hard. Inspecting the raw svg could
be quite time-consuming, especially in the cases where one element
out of very many did not appear, and we had to manually locate it in
the generated html to inspect its properties. Due to how Javascript
works, the code does not necessarily crash when the wrong number
of arguments are given, or the arguments or of the wrong type. This
led to some subtle bugs where typos, or things like arguments being
in the wrong order did not result in a crash, but simply some slightly
unexpected behavior in another part of the code. This challenge was
exacerbated by D3’s heavy reliance on strings as arguments, which
cannot be inferred by the IDE’s auto-complete and/or language server.

9.3 Limitations

Our results can be no more accurate or detailed than the data we receive
from Spotify. For example, genres only being registered to artists and
not tracks hurts how granular we can be in any analysis based on genre.
In future work, it could be interesting to use external data source such
as MusicBrainz or LastFM to find more granular genre data and see if
more interesting results could be found.

9.4 Future Work

The Explorify platform could be extended to music streaming histories
from other platforms such as YouTube or Last.fm. In addition, the
Explorify platform could adopt datasets from two or more users and
display their similarities and differences. Several people we have talked
with have expressed interest in such a feature. In his work on Last.fm
explorer, M. Pretzlav shows how this could be done for the data of two
users [10]

In the future we would very much like to perform a user study of
Explorify. This was something we would actually have liked to do quite
early in the process, but due to time constraints were unable commit to.
Many of the questions we have regarding the efficacy of our solution
would be answered by such a study.

There are many smaller features which we would have loved to add
to Explorify, but sadly did not have time to implement:

• More control over which nodes are shown. Currently, we only
show top n most popular nodes, as controlled by the edgemap
control panel. We would have liked to have made this widget a
sliding scale instead, allowing the user exact control over which
range of artist popularity to select from. We would also have liked
to support more ordering criteria than personal popularity. For
example global popularity, or by the ”firstStream” attribute.

• Support for selecting multiple days in the heatmap calendar, either
to contrast or combine the sets of artists for the selected days.

• For days with a lot of listening activity, the timeline view can get
very cramped showing periods with lots of switching between
artists. We would have liked to help this issue by adding support
for zooming in the timeline view.

• More edgemap options. We are excited by the though of what
one could discover if more options for edgemap configuration
were added. For example, we would have liked to add support
for changing between multiple types of edges, having edges for
related artists, artists that were streamed in the same session, and
more. We would also have liked to explore the possibility of
adding more options for positioning and coloring artists.



Fig. 12. Final version of the Explorify platform. There are a total of 4 different interactive and interconnected views. The main view is the ‘Artist Genre
Network’ which is supported by the ‘Daily Listening Pattern’ and the ‘Top 20 Artists’ views. Another view, ‘Detailed Listening History per Day’, is
positioned at the very bottom and is displayed only when the user has selected a day in the ‘Daily Listening Pattern’ view.

• Have the calendar heatmap tiles encode the most dominant hue
for their respective days, with saturation encoding how dominant
and lightness encoding the total activity as before (only lightness
is limited to some range where the hue of very active days is still
easily discernible).

• We would also have liked to add more connectivity to all the views.
For example, it would have been great if, when highlighting
an artist, the calendar heatmap would display on which days
the highlighted artist was streamed, and how much they were
streamed.

9.5 Project Reflection
Working through this project has been a very challenging but rewarding
experience. It has taught us a lot about going from an idea to doing
research that supports and develops that idea, and finally, building a
pipeline to implement it while iterating the original design and modify-
ing accordingly to the time constraints. While some things did not go
as smoothly as we had initially expected, namely compatibility issues
with different build tools causing massive headaches when trying to
combine code bases, we still managed to work around these constraints
while gaining valuable learning experience. It has taught us the im-
portance of being diligent and checking each line of code to ensure
that it functions as intended. It has also highlighted the importance of

publishing functioning and well-documented code for any of our future
research projects. Another challenge that we did not anticipate was the
time required to learn D3. While we managed to handle most of these
challenges, next time we plan to be more vigilant in identifying them
ahead and plan accordingly rather than resolving them if and when they
arise.

On the time management side, we would also want to reflect on the
challenges of correctly estimating the time needed to deliver individual
components which is an important skill for the successful prioritizing
of the most promising ideas. For the future, we would aim to have the
overall work split into smaller chunks so that it is easier to accurately
estimate the delivery times.

10 CONCLUSION

We introduce a platform which allows Spotify users to process and
visualize their personal streaming history. The interactive and playful
nature of our final dashboard aids Spotify users to explore their own
music taste, find listening patterns and engage with their data. Our
dashboard provides multiple interactive views and visualization simu-
lations making it an enjoyable experience especially for people with
narrower attention span.



ACKNOWLEDGMENTS

We would like to thank Elizabeth Reid, Mifta Sintaha and Nichole
Boufford for providing their detailed and constructive feedback on our
initial design which tremendously helped to navigate the project in the
right direction. We would also like to express our gratitude to Professor
Tamara Munzner for her valuable support and feedback which were
paramount in achieving the positive outcome as well as completion of
this project.

REFERENCES

[1] D. Baur and A. Butz. Pulling strings from a tangle: Visualizing a personal
music listening history. IUI ’09, p. 439–444. Association for Computing
Machinery, New York, NY, USA, 2009. doi: 10.1145/1502650.1502715

[2] D. Baur, F. Seiffert, M. Sedlmair, and S. Boring. The streams of our
lives: Visualizing listening histories in context. IEEE Transactions on
Visualization and Computer Graphics, 16(6):1119–1128, 2010. doi: 10.
1109/TVCG.2010.206

[3] L. Byron and M. Wattenberg. Stacked graphs – geometry amp; aesthetics.
IEEE Transactions on Visualization and Computer Graphics, 14(6):1245–
1252, 2008. doi: 10.1109/TVCG.2008.166

[4] T. Dang, A. Anand, and L. Wilkinson. Fmfinder: Search and filter your
favorite songs. vol. 7431, pp. 348–358, 07 2012. doi: 10.1007/978-3-642
-33179-4 34

[5] R. Dias, M. J. Fonseca, and D. Gonçalves. Interactive exploration of
music listening histories. AVI ’12, p. 415–422. Association for Computing
Machinery, New York, NY, USA, 2012. doi: 10.1145/2254556.2254637

[6] M. Doerk, S. Carpendale, and C. Williamson. Edgemaps: Visualizing
explicit and implicit relations. 04 2011. doi: 10.1117/12.872578

[7] M. D. M. C. José Bateira, Fabian Gouyon. Music discovery in spotify
with rama. 2014.

[8] T. Munzner. Visualizaiton Analysis and Design. CRC Press, Taylor
Francis Group, 2014.

[9] T. Munzner, F. Guimbretière, S. Tasiran, L. Zhang, and Y. Zhou. Treejux-
taposer: Scalable tree comparison using focus+context with guaranteed
visibility. 22(3):453–462, jul 2003. doi: 10.1145/882262.882291

[10] M. A. Pretzlav. Last.fm explorer: An interactive visualization of hierarchi-
cal time-series data.pdf. 2008.

[11] J. Wirfs-Brock, S. Mennicken, and J. Thom-Santelli. Giving voice to silent
data: Designing with personal music listening history. Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems, 2020.



Task People Target date Actual date Target hours Actual hours
Get to know the dataset Both Oct 21 Oct 21 5 5
Write initial report Both Oct 20 Oct 21 6 8
Familiarize ourselves with D3 Both Oct 30 Oct 30 7 10
Create artist streamgraph Jonatan Nov 7 - 7 -
Create daily listening pattern heatmap Inna Nov 7 Nov 18 5 10
Create top artists over time barchart Inna Nov 15 Nov 16 7 7
Add interactivity to heatmap Inna Nov 15 Nov 16 5 4
Create artist-genre network Jonatan - Nov 16 - 14
Write updated report Both Nov 15 Nov 16 6 4
Add interactivity to artist-genre network Jonatan Nov 21 - 5 -
Add interactivity to artist streamgraph Jonatan Nov 21 - 5 -
Create track clustering by audio features Inna Nov 21 - 6 -
Create top artists barchart Inna Nov 12 Nov 15 4 6
Create final UI for Explorify Inna Dec 1 Dec 1 5 7
Make aritst-genre network more edgemap-like Jonatan - Dec 1 - 16
Add interactivity to top artists barchart Jonatan Dec 1 - 7 -
Add interactivity to track clustering Inna Dec 1 - 6 -
Create single-day timeline chart Inna Dec 10 Dec 7 6 4
Combine all visualizations together Both Dec 7 Dec 13 10 8
Improve supporting views Inna Dec 12 Dec 10 2 4
Improve artist-genre network Jonatan - Dec 12 - 16
Create legend for edgemap Jonatan - Dec 14 - 3
Improve responsiveness of dashboard Both Dec 14 - 5 - -
Prepare presentation and demo Both Dec 14 Dec 14 5 5
Write final report Both Dec 17 Dec 18 10 10
Sum Inna hours: 67 99
Sum Jonatan hours: 76 ??
Hours total: 143 ??

Table 2. Target hours are individual. Items missing target hours and dates were not present in the original milestones plan. Items missing actual
hours and dates were never implemented.


	Introduction
	Related Work
	Visualizing Music Streaming History
	Visualizing Explicit and Implicit Connections in Multidimensional Datasets

	Dataset
	Data and Task Abstractions
	Discovering Artist and Genre Relationships
	Locating and Comparing Top Artists
	Exploring Daily Listening Pattern
	Exploring Single Day Streaming Activity

	Solution
	Artist-Genre Network
	The Artist-Genre Edgemap
	Nodes and Transitions
	A Partial Force-Directed Layout
	Color
	Edges
	Highlighting
	Labelling
	Other features
	Top Artists Bar Chart Connectivity

	Locating and Comparing Top Artists: Interactive Bar Chart
	Exploring Daily Listening Pattern: Calendar Heatmap
	Exploring Daily Streaming Patterns: Gantt Chart

	Implementation
	Preprocessing
	Explorify

	Execution Timeline
	Results
	Discussion
	Strengths
	Technical Challenges
	Limitations
	Future Work
	Project Reflection

	Conclusion

