
Explorify: A Personalized Interactive Visualization Tool for Spotify Listening
History

Inna Ivanova
University of British Columbia

innai@cs.ubc.ca

Jonatan Sissener Engstad
Norwegian University of Science and Technology

jonatane@stud.ntnu.no

Abstract

There are many music streaming platforms but Spotify has
dominated the market and is currently the largest one with
millions of users. Spotify collects huge amounts of data
from their users on a daily basis which allows for a great re-
search opportunities in the data science community. There
are very limited attempts that have been published on the
topic of visualizing Spotify streaming history which inspired
this project. We introduce Explorify: a personalized inter-
active visualization tool for Spotify listening history. Ex-
plorify offers a plethora of interactive visualizations that
help Spotify users explore their own music taste, patterns
and enjoy the interaction with their own data.

1. Introduction
Spotify is the largest music streaming platform with mil-
lions of users. Spotify has revolutionized music discovery
by collecting streaming data from their users and apply-
ing modern neural algorithms for their music recommen-
dations. In addition, Spotify provides information and au-
dio features for each track and artist on the platform which
is easily retrievable through their API. Users are even able
to request their own personal data including streaming his-
tory, playlists, top artists and others. While there are a lot
of visualization attempts for Spotify data on the Internet
they are relatively simple and do not have interactive com-
ponents. In this project we propose a novel visualization
platform for personalized music streaming history provided
by Spotify called Explorify. The main goal of Explorify
is to allow users to visualize in an interactive manner their
personal streaming history and discover patterns for their
music taste.

2. Related Work
To this date only a limited number of attempts has been
published on the topic of visualizing the listening history

of Spotify users. More work has been published on the
topic of visualizing the listening histories of users of the
Last.fm platform, a service with very similar offerings to
that of Spotify. There are differences in what data the two
platforms make available, but they are mostly minor, and
the semantics remain largely the same. In discussing these
works, we will usually make no distinction between what
platform the work relies on, as it (in most cases) is immate-
rial to the work.

The published works within this area can be divided into
two groups, based on their main goal. The first group’s goal
is to help the user discover new music. The papers targeting
this goal seek to create tools that reveal tracks, artists and
genres that were previously unknown but are believed to be
enjoyable to the user. Usually, this is achieved by allowing
the user to explore and traverse networks of similar artists
in search of undiscovered ones [1, 2]. Several tools that use
this approach are available on the Internet. To name a few:
LivePlasma, MusicRoamer, Music-graph, Music-map.

The goal of the second group is to reveal trends and facts
about the user’s listening history, supporting the user in in-
trospection about their own listening habits. These tools all
visualize the user’s listening history in one or more ways,
and support various means of interaction such as adjusting
the granularity of what is shown [3, 4, 5]. Another tool,
LastHistory, attempts to make this presentation more mean-
ingful to the user by augmenting the listening history with
contextual information from other data sources, such as per-
sonal phots and calendar entries [6].

In a recently published work, Wirfs-Brock et al. explore
how these goals can be combined, enhancing music explo-
ration by giving the user deeper insight into their own lis-
tening history and listening patterns [7].

While Explorify falls into the second group, we hope that
our solution will facilitate discovery by piquing the user’s
interest and deepening their insight into their own music
preferences in a way that will inspire exploration.

1



3. Dataset

There are a total of three datasets tested for the visualiza-
tions provided by Explorify. Each dataset comprises the
streaming history for a user over one year period. Each item
of the datasets contains the trackName, artistName,
msPlayed and endTime. An overview of the datasets
is provided in Table 1. The raw datasets are further pro-
cessed to extract detailed information for each track and the
corresponding artists and album. Data processing libraries
such as numpy and pandas are used for the computations
as well as the Spotify API to retrieve more details for each
track, artist, and album entity. Examples of additional in-
formation provided by the Spotify API include:

• Track audio features such as danceability, speechiness,
etc.;

• Genres associated with the album and the artist;
• Popularity of the album and the artist;
• Number of followers the artist has;
• Similar artists for each artist;

Total Tracks Unique
Tracks

Unique
ArtistsSkipped Not Skipped

SH J 1126 6887 4272 1598
SH D 1919 3570 1428 375
SH K 1862 1711 1451 818

Table 1. Datasets overview. Skipped tracks are ones that are played
for less than 10 seconds.

Dataset availability is both static and dynamic. The static
part is the streaming history provided by the user. The dy-
namic part is the prepossessing of the raw user data and the
additional features fetched through the Spotify API.

4. Data and Task Abstractions

There are a total of 5 tasks we will be visualizing within
the Explorify platform: Artist-Genre Network, Track
Clustering by Audio Features, Artists Stream-graph,
Top Artist Over Time and Daily Listening Pattern.

4.1. Artist-Genre Network

The first task aims to explore the the relationship between
genres and artists. Questions this particular task aims to
answer are:

• How do genres connect artists?
• What other genres are associated with connected artists

and how different are they?

Both genres and artists are categorical attributes. These
attributes form a dataset of type network since there is a
genre relationship (link) between the artist items (nodes).
Each artist can be associated with more than one genre. The
number of artists for each dataset is relatively large (hun-
dreds to thousands) so in order to have a meaningful visu-
alization with distinct connections only the top 100 artists
will be considered. In terms of abstract definition, this task
explores the connectivity of nodes within a network and the
differences between connected nodes. For a Spotify user,
the goal of this task is to analyze the network. In addition,
the user might want to look-up specific artist and their con-
nections. The hypothesis is that artists connected by genres
will not be associated with other completely different gen-
res. To verify this hypothesis, the user needs to consume the
network graph and discover patterns and abnormalities.

4.2. Track Clustering by Audio Features

The second task will be clustering user tracks by their audio
features. Questions this particular task aims to answer are:

• Which tracks are similar according to their audio fea-
tures?

• What is the predominant genre within a cluster and is
there a distinct winner?

There are a total of nine audio features attributes for
each track: danceability, valence, energy, tempo, loudness,
speechiness, instrumentalness, liveness and acounsticness.
All these features are ordered quantitative sequential data.
Each track is further assigned a list of genres. The genre
attribute is a categorical data. All these attributes form a
dataset of type table since there are items (tracks) with asso-
ciated attributes (audio features and genres), and numerical
or categorical values assigned to each cell of the table (the
audio feature value and genre). In terms of abstract defini-
tion, this task partitions high dimensional data points into
clusters and maps them into 2D projection. In addition, the
task assigns label to each cluster. For a Spotify user, the
goal of the task is to explore the tracks they listen to. The
hypothesis is that tracks with similar audio features will be
mapped close together in the low dimensional space. In ad-
dition, tracks mapped together should have similar genre as-
sociated with them. To verify this, the user needs to look-up
specific tracks within a cluster and check their genre labels.

4.3. Artist Streams Time-Series

In the third task, we wish to let the user explore the evolu-
tion of their listening patterns for the duration of the history.
The goal is to allow the user to discover events such as when
they first started listening to an artist, and patterns such as
how the user’s relationship with an artist changed over time.
We also wish to make it easy for the user to see which artists
they streamed the most, as well as the absolute number of

2



streams, at any point in time. The data used for this task
will be the following:

• artist name: categorical
• artist id: categorical
• timestamp: quantitative, sequential, hierarchical

Each data set covers around one year of a user’s lis-
tening history. It follows that the range of the timestamp
data is within a single year. Becasue the timestamps are
accurate down to the second, some aggregation will have
to be performed so that items can be grouped together
by temporal closeness. Grouping the items on a set
number of days, like 5 or 7 will yield a good number
of groups, being granular enough to reveal real detail
without being so fine-grained that overarching patterns
are hard to discern. There are no levels in the categorical
data. Artist id should map 1-1 to artist name, though
artist id will be used internally in the system to be safe.

For this task the data will be structured in the fol-
lowing way: For each set time-interval, every artist in the
data set will be associated with the number of times they
occur within that interval. One can then visualize, for each
interval, the absolute or relative number of streams each
artist received.

4.4. Top Artist of All Time

The goal if the fourth task is to provide the user with a clear
idea of the most streamed artists in their history. This may
at first glance seem to overlap with the third task, but while
these two tasks do represent the same data (this task is prac-
tically a summary of the third task), the information the user
will be able to easily extract from the respective visualiza-
tions will be quite different. The third task displays the most
streamed artist for each time interval. For most users, the
artist that is streamed the most will shift between each in-
terval, and gaining a clear picture of (for example) the top 5
most streamed will be hard to do visually. We believe that
the user will be interested in this data and therefore we have
chosen to include the fourth task.

The data used for this task is the exact same as the one
used in the third task. The data processing will be similar
as well. The difference in processing is that the aggregation
will only be performed over a single time interval, which
will include the whole history.

4.5. Daily Listening Pattern

The final fifth task is visualizing the daily Spotify usage of
a user. Questions this particular task aims to answer are:

• How music streaming routine changes over time?
• Which days observe the most listening hours?
• Is there spike usage for specific dates?

To retrieve the data needed for this task, the tracks
streamed on a particular day are summed up together. This
is a time series dataset so it’s easy to aggregate tracks by
day. This results in an attribute tracks count that is or-
dered quantitative sequential data. This attribute forms a
dataset of type table since there are items (days) with as-
sociated attributes (tracks count), and numerical values as-
signed to each cell of the table (number of tracks per day).
In terms of abstract definition, this task reduces a table
dataset by aggregating attributes and displays the results.
For a Spotify user, the goal of the task is to analyze their
streaming listening history and search for patterns or spike
usage for specific dates.

5. Solution

The work on the Explorify platform is performed using
Python and JavaScript with D3 [8]. Python is mainly used
for data processing while JavaScript with D3 is used for cre-
ating the visualizations.

5.1. Artist-Genre Network: Force-Directed Graph
or Adjacency Matrix

Since the data to be visualized for task one (Section 4.1) is
a network type a total of two visualizations are considered:
adjacency matrix presentation and force-directed graph in-
spired by a paper on a similar visualization task [9]. The
preference is over the force-directed graph, however, de-
pending on the time constrains and challenges around the
implementation, we might end up with the simpler adja-
cency matrix. Whichever visualization we land on, we will
aim to be interactive.

In the force-directed graph each artist will be encoded by
a node and each genre connection by an edge. Since artists
could be assigned more than one genre some edges might
have higher ‘weight’. Therefore, the edge width will encode
the number of genres in common – the more the wider the
line. The colour channel can be used for highlighting some
connections of interests. To inspect specific artists the user
will be allowed to click on the artist (node) of interest and
compare to another artist that is a connection. A pop-up
display will show detailed information about the similarity
and difference in genres between the two artists.

In the case of adjacency matrix each row and column
item will correspond to the unique artist. The values of the
cells in the matrix will display the number of genres in com-
mon between two artists. To encode the number of equal
genres the colour and hue channel will be used. We will
work with a single colour sequential colour map because
the number of genres in common is always a non-negative
number. To inspect a connection of interest, the user will be
allowed to click on specific cell. As with the force-directed
graph, a pop-up display will show the details.

3



5.2. Track Clustering by Audio Features: Grouse-
Flocks

For the track clustering task we will use a GrouseFlocks
graph [10] visualization which was inspired by a post on the
Internet [11]. First step is to partition the tracks into cluster
according to their audio features. To do that we will use
either k-means or quadtree clustering algorithms. Once the
clusters are obtained a dimensionality reduction algorithm
will be applied on the tracks audio feature vectors data to
reduce the space. We will experiment with the most famous
ones like tSNE, PCA or UMAP.

All these steps prepared the data we need for the actual
construction of the GrouseFlocks graph. Each leaf node on
the graph is a track. Tracks within a cluster are connected to
a node which represents the genre distributions within that
cluster. The colour channel will encode the unique genres
which are categorical data. The connecting node will repre-
sent a pie chart of the genres distribution. The border out-
line of the node will be filled with the colour representing
the predominant genre for the cluster. The user will be able
to click on the nodes that connect the tracks within a cluster
and inspect further which tracks are part of that cluster and
what genres and audio features are there.

5.3. Artist Streams Time-Series: Streamgraph

For the task of visualizing the artist streams time-series, we
imagine using the streamgraph idiom [10]. The overarching
concepts of a streamgraph are relatively simple, but there
are many details such as color scheme, ordering, labelling,
scale and angle that must be taken into consideration [12].

5.4. Top Artists of All Time: List or Animated Bar
Chart

For this task, we have imagined two different visualiza-
tions, depending on how much time we to work on the
task, and how challenging the implementation of each
solution proves to be. The simplest option is simply
a list of the top 3 most streamed artists, but with the
visualization arranged to look like a podium. A picture
representing each artist (available via Spotify) will be
used to represent each artist as on the podium along
with the artist’s name. The total number of streams for
each artist will be displayed as well, above each artist.

The second option we are considering is an ani-
mated bar chart, sometimes referred to as ”racing bar
charts”. This bar chart will display the top 5 or 10 most
streamed artists cumulatively, moving from the start of the
history to its end. The bar chart will contain the 5 artists
with the most number of streams so far, and be sorted
by the total number of streams in ascending order, up the
y-axis. As artists overtake one another, they will trade

places in the chart, moving up or down the ranking, or even
falling off it completely.

A potential challenge with this second option is that
some users may have very many streams of a small set of
artists at the very beginning of their history, before later di-
versifying their taste in artists. In this case, it is possible that
the animation will remain static for much of its playtime, as
no new artists will have the number of streams necessary
to break the top 5. A solution to this problem would be
to introduce a popularity score that not only takes into ac-
count cumulative streams, but also the recency of streams,
so that artists who have not been listened to for some time
will have their score decay and thus fall off ranking. This
will of course mean that the ranking is no longer based on
a total number of streams, but an arbitrary formula made up
by us, which users may not find to be meaningful. Nonethe-
less, it is a path we may chose to explore.

5.5. Daily Listening Pattern: Heatmap Matrix

For this task a heatmap matrix was chosen to display the
listening patterns over time. The visualization is relatively
simple and was inspired by the famous visualization for the
number of commits per day by Github. There are 7 rows in
total and each of them corresponds to the day of the week.
Each column of the matrix corresponds to the week number
but this will not be displayed. Instead, the year and the
month will be displayed along the x axis as they are more
descriptive. Each cell value corresponds to the number of
tracks listened on the particular day. We use the colour and
hue channels to encode the number of tracks listened on a
particular day. The higher the hue, the higher the number
of tracks played on that day. Since the values of each cell
are quantitative sequential data with positive range, a single
colour sequential color map will be used.

By aligning the streaming interaction in this way we can
clearly observe whether there are any patterns over a month,
week or specific days. Furthermore, we can clearly see if
there are any spikes in the interactions. Additional marks
can be used to highlight information, e.g. star mark to point
specific days of interest. Since the data to be visualized
is over the course of a year (a total of 52 columns), a slider
can be added for the user to inspect the data in an interactive
manner and navigate easier through the visualization.

6. Execution Timeline Milestones
The following timetable suggests a rough estimate with

milestones that aims to achieve the proposed objectives in a
total of 160 hours.

1. Familiarize ourselves with the dataset - 5 hours each
(10 hours total)

2. Familiarize ourselves with D3 - 7 hours each (14 hours
total)

4



3. Milestone 1: Create Daily Listening Pattern Heatmap
- Inna 5 hours

4. Milestone 1: Create Artists Stream-graph - Jonatan 7
hours

5. Milestone 2: Add interactivity for Daily Listening Pat-
tern Heatmap - Inna 5 hours

6. Milestone 2: Add interactivity for Artists Stream-
graph - Jonatan 5 hours

7. Milestone 3: Create Artist-Genre Network Graph -
Inna Jonatan 8 hours each (16h total)

8. Milestone 4: Add interactivity for Artist-Genre Net-
work Graph - Inna Jonatan 5 hours each (10h total)

9. Milestone 5: Create Top Artist Over Time Barchart -
Jonatan 7 hours

10. Milestone 5: Create Track Clustering by Audio Fea-
ture - Inna 6 hours

11. Milestone 6: Add interactivity for Top Artist Over
Time Barchart - Jonatan 7 hours

12. Milestone 6: Add interactivity for Track Clustering by
Audio Feature - Inna 6 hours

13. Milestone 7: Combine all visualizations together -
Inna Jonatan 10 hours each (20 total)

14. Final report - Inna Jonatan (10 hours)
15. Presentation and demo - 5 hours

Total of 133 hours. Left 27 hours to spare if something goes
wrong.

7. Results
A rough sketch of the Explorify platform shown in Figure
7.

8. Discussion

8.1. Limitations and Future Work

The Explorify platform could be extended to music stream-
ing histories from other platforms such as YouTube or
Last.fm. In addition, the Explorify platform could adopt
datasets from two or more users and display their similar-
ities and differences. Several people we have talked with
have expressed interest in such a feature. In his work on
Last.fm explorer, M. Pretzlav shows how this could be done
for the data of two users [3]

Our results can be no more accurate or detailed than the
data we receive from Spotify. For example, genres only
being registered to artists and not tracks hurts how granular
we can be in any analysis based on genre. In future work,
it could be interesting to use external data source such as
MusicBrainz or LastFM to find more granular genre data
and see if more interesting results could be found.

Figure 1. Explorify platform. There are five visualizations for the
five tasks we define in Section 4.

References
[1] M. D. M. C. José Bateira, Fabian Gouyon, “Music discovery

in spotify with rama,” 2014. 1

[2] T. Dang, A. Anand, and L. Wilkinson, “Fmfinder: Search
and filter your favorite songs,” vol. 7431, pp. 348–358, 07
2012. 1

[3] M. A. Pretzlav, “Last.fm explorer: An interactive visualiza-
tion of hierarchical time-series data.pdf,” 2008. 1, 5

[4] R. Dias, M. J. Fonseca, and D. Gonçalves, “Interactive ex-
ploration of music listening histories,” AVI ’12, (New York,
NY, USA), p. 415–422, Association for Computing Machin-
ery, 2012. 1

[5] D. Baur and A. Butz, “Pulling strings from a tangle: Visual-
izing a personal music listening history,” IUI ’09, (New York,
NY, USA), p. 439–444, Association for Computing Machin-
ery, 2009. 1

[6] D. Baur, F. Seiffert, M. Sedlmair, and S. Boring, “The
streams of our lives: Visualizing listening histories in con-
text,” IEEE Transactions on Visualization and Computer
Graphics, vol. 16, no. 6, pp. 1119–1128, 2010. 1

[7] J. Wirfs-Brock, S. Mennicken, and J. Thom-Santelli, “Giving
voice to silent data: Designing with personal music listening
history,” Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, 2020. 1

[8] M. Bostock, “D3.js - data-driven documents,” 2012. 3

5



[9] N. J. Bryan and G. Wang, “Musical influence network anal-
ysis and rank of sample-based music.,” in ISMIR, pp. 329–
334, 2011. 3

[10] T. Munzner, Visualizaiton Analysis and Design. CRC Press,
Taylor Francis Group, 2014. 4

[11] “Spotify music clustering.” https://observablehq.
com/@sandravizmad/force-directed-layout.
Accessed: 2021-10-20. 4

[12] L. Byron and M. Wattenberg, “Stacked graphs – geometry
amp; aesthetics,” IEEE Transactions on Visualization and
Computer Graphics, vol. 14, no. 6, pp. 1245–1252, 2008.
4

6

https://observablehq.com/@sandravizmad/force-directed-layout
https://observablehq.com/@sandravizmad/force-directed-layout

