
ParViz: Visualizing Graph Partitioners
Hadi Sinaee

University Of British Columbia
sinaee@cs.ubc.ca

Abstract—Once upon time ...

I. INTRODUCTION

Graphs are considered as one of the fundamental math-
ematical models for describing relationships. Social media
platforms, such as Facebook or Twitter, are good examples
of this type of modelling. Usually, in these graphs, people
are vertices, and edges are relationships between them, which
are defined based on a specific definition, such as friendship
or follower-followee. Social media is not the only field that
benefits from graphs; bioinformatics, astrology, or machine
learning are a few examples of domains that use graphs.

During the past decades, graphs have become the interest
of many researchers in different areas. However, the questions
that are asked share the same type. For example, detecting
communities in a graph, counting the number of triangles
and computing the PageRank are among the most common
frequently asked questions. Consequently, various graph anal-
ysis algorithms have been implemented to answer different
questions about graphs. Also, researchers and companies have
built many specialized systems for graphs, such as GraphChi
or Pregel, capable of storing graph data efficiently and running
graph algorithms.

Besides optimizing the algorithms or data structures, parallel
computation models are used to achieve high performance
since they can run an algorithm in parallel or multiple queries
simultaneously. Partitioning a graph into a set of sub-graphs
is considered a common approach for parallel computation.
Graph partitioners are algorithms that create a set of sub-
graphs from a graph, which we call partition.

There are three types of partitioners: Vertex Partitioners,
Edge Partitioners, and Hybrid Partitioners. Vertex Partitioners
assign each vertex and its connected edges to a partition.
On the other hand, Edge Partitioners assign each edge and
its connected vertices to a partition. Also, there are Hybrid
Partitioners that assign edges or vertices to partitions.

To devise new partitioners, algorithm designers need to
know each partitioning algorithm and its corresponding parti-
tioning quality. Understanding a partitioning algorithm means
that one should know the strategy of an algorithm for par-
titioning; what the final partitioning looks like. Partitioning
quality is a set of defined metrics, which are calculated after a
partitioner is done. These metrics show how good partitioning
is and what trade-offs we paid for that. Having these two
in hand, algorithm designers can devise new algorithms or
improve current ones. However, it is not as easy as it seems

since there is no standard way of showing the partitioning
result or analyzing the metrics of a partitioner.

Suppose we want to see the nodes’ assignments of parti-
tioning: which node and its edges belong to which partition.
Since there is no standard method for showing the result of
partitioning, an algorithm designer has to write custom scripts
to achieve his goal. For example, a common approach for
representing graphs is the METIS format, in which the number
of nodes and edges along with edge information is provided in
a file. The partitioner could produce the resulting partitions in
the METIS format, and the algorithm designer can use them as
inputs to his scripts. Furthermore, the initial goal of seeing the
nodes’ assignments could be more difficult when the number
of edges or nodes is significant. This problem exacerbates
when our goal is to compare two different nodes’ assignments
by two different partitioners.

Partitioning quality can be measured via a set of metrics and
is used as a standard approach for choosing a partitioner for
a task. Therefore, understanding the behaviour of algorithms
through the lenses of these metrics becomes crucial. However,
these metrics are calculated at the end of partitioning. Conse-
quently, the changes to these metrics during the partitioning
process are missed. For algorithm developers, it is useful and
helpful to see intermediate changes since it helps them to 1-
understand the behaviour of each partitioner as it partitions
the graph and 2- provide a way to compare two algorithms
at a more detailed granularity. Unfortunately, the only way of
accessing intermediate changes is via analyzing ad hoc logs
in a partitioner’s codebase, which could be time-consuming.

ParViz is a viz tool to address mentioned challenges for
understanding graph partitioners. At the first step, ParViz
implements a tool for visualizing the quality metrics of a
graph partitioner as they evolve. Then, it provides an idiom to
visualize the nodes’ assignments of a partitioning algorithm.
Having these features, algorithm designers can understand the
behaviour of each partitioner and compare them with each
other.

II. RELATED WORK

III. DOMAIN AND TASK ABSTRACTION

This section goes deeper into the terminologies of the graph
partitioners and provides background information for the rest
of this paper. Next, in the task abstraction, we describe dataset
type and data types, along with a description of the project’s
goal.

A. Graphs

Graphs are commonly used as a mathematical tool for
modeling relationships: vertices show entities and edges
show relationships between vertices. A graph G is de-
fined as G = (V,E), where V is the set of vertices
in the graph, V = {v1, v2, ..., vN}, and E is the set
of edges connecting two vertices in that graph, E =
{(vi, vj)|vi, vj ∈ V where i, j = 1, ..., N}. Size of G is deter-
mined by its number of vertices and edges, which are denoted
as N and M respectively (|V | = N, |E| = M). If for every
(vi, vj), there is a corresponding edge (vj , vi), we say the
graph is undirected; otherwise, it is directed. Also, there are
weighted graphs, where each edge, eij , can have an associated
weight, wij . In this project, we are focusing on undirected and
unweighted graphs.

There are various methods for storing graphs. Adjacency list
is a data structure that stores a graph in the form of a vertex
and all its connected edges. Figure 1 shows the adjacency list
for the vertex 3. As it shows, there are edges between 3 and
1,2,5, and 10. For storing a graph in the form of adjacency
list, we store all vertices and their edges in this form.

In an undirected graph, the degree of a vertex is the number
of edges it has. In Figure 1, the degree of vertex number 3 is
four since there are four edges from vertex 3 to other vertices.

Fig. 1. Adjacency list for the vertex 3. Vertex 3 has edges to vertices 1, 2,
5, and 10.

We use adjacency list for storing graph data for the rest of
this project. Also, when we are talking about graph data, we
mean the adjacency list unless otherwise stated.

B. Graph Partitioning

Partitioning of a graph means to create multiple sub-graphs
from the original one. The set {P1, P2, ..., Pk} is a k-partition
of a graph G if each Pi is a sub-graph of G :

Pi = (Vi, Ei) , Vi ⊂ V and Ei ⊂ E (1)

In other words, in a k-partitioning algorithm, we create K
number of sub-graphs from the original graph G. Each created
sub-graph has to have a set of vertices and edges that are subset
of the original one.

There are different approaches for partitioning a graph:
Vertex Partitioning, Edge Partitioning and Hybrid Partitioning.
In Vertex Partitioning, a partitioner assigns each vi ∈ V and
all its connect edges to a partition. Therefore, for an edge
(vi, vj), if both of vi and vj were assigned to two different
partitions, we would have a duplicated edge, i.e. (vi, vj), in
their corresponding partitions. However, in Edge Partitioning,
a partitioner assigns each edge (vi, vj) ∈ E and its vertices,
i.e. vi and vj , to a partition. Similarly, if two edges shared the
same vertex, we would have duplicated vertices in different

partitions. Finally, in hybrid partitioning, we assign both
edges and vertices to different partitions, and, consequently,
we would have both duplicated edges and vertices in each
partition.

ParViz focuses on the Vertex Partitioning approaches since
the number of vertices in graphs, which we use in this
course project, are relatively manageable compared to the large
number of edges that might exist.

C. Node Assignment

The node The node assignment means which node belongs
to which partition. A Vertex Partitioner assigns each vertex
and all of its connected edges to a partition. As described in
Section B, the result of vertex partitioning causes duplicated
edges since there might be an edge that has two vertices
belonging to two different partitions. The final partitioning
result for a k-partitioning method is a set of K sub-graphs,
{P1, P2, ..., Pk}, of the form in equation 1. Also, as we
described in Section A, each Pi = (Vi, Ei) is stored in the
adjacency list format illustrated in Figure 1.

If one is interested in finding the nodes assignment of a k-
partitioning, one has to iterate all K sub-graphs and deal with
each duplicated edge. As the number of partitions and the
size of a graph could be large, extracting the node assignment
could be challenging.

D. Partitioning Metrics

Algorithm designers have introduced a variety of metrics for
determining the quality of a partitioner. Due to the diversity
of partitioners themselves, it is not possible to have a set of
metrics that are suitable for all of them. Therefore, there are
general metrics for determining the quality of a partitioner that
are calculated differently based on the type of partitioner, e.g.
Vertex Partitioning or Edge Partitioning. Among them, in this
project, we are focusing on Duplication Factor (DF), Load
Balancing (LB) and Edge-Cut (EC).

Duplication Factor measures the ratio of duplicated edges
with respect to the original graph: sum of the total number
of edges in each partition to the total number of edges in a
graph. Load Balancing measure the load on the most loaded
partition. Edge-Cut measure the number of edges between two
partitions where the vertices of those edges do not belong to
the same partition. We can think of these three metrics in terms
of a vector:

metrics vector =

DF
LB
EC

 (2)

All of these metrics are usually measured at the end of
the partitioning. If one wanted to compare the quality of a
partitioner with another one, one could do that by comparing
their corresponding metrics. However, it is possible to measure
all of these metrics as the partitioner makes progress. At the
end of each iteration of a partitioning, as the partitioner has
decided about a node’s partition, we can calculate equation 2.
Therefore, we can have a series of these metrics vectors:

metrics vectori =

DFi

LBi

ECi

 , i = 1, 2, ..., T (3)

T is the total number of iterations of a vertex partitioning.
For vertex partitioners, it is the number of vertices of a graph
since vertex partitioners assign each node to a partition in
each iteration of the algorithm. Therefore, the total number of
iterations equals to the total number of vertices.

E. Task Abstraction

In this section, we go over the task abstraction in ParViz.
There are two tasks that this project is designed to do.

1) Task 1: How was the metrics vector evolving during the
partitioning process? One of the challenges for understanding
a graph partitioner is to see how the metric vector has been
evolved during the partitioning process. If programmers want
to understand it, they have to go through the whole log and
look for changes.

2) Task 2: What do the final nodes’ assignments look
like? The result of partitioning is usually accessible after the
partitioner is done. The final result usually is available as part
of the internal data structure of the partitioner or exported
as a file. Therefore, putting all information about the nodes’
assignments of an algorithm is hard.

F. Data

There are two different dataset for this project. The first
one deals with Task 1 in which we are looking for a way to
see how a metrics vector evolve during the partitioning. The
second one deals with Task 2 in which we are looking for the
final nodes’ assignments.

1) Task 1: For this task, we have a tabular dataset where
each row corresponds to an iteration of our partitioner. The
first two columns show the vertex number and its assigned
partition. The remaining three columns show our metrics
vector after the node assignment.

The number of rows in this dataset is equal to the number
of vertices in our graph, i.e. |V |. Therefore, the dimensionality
of our dataset is |V | × 5. In this project, we focus on graphs
with less than 100M vertices.

2) Task 2: For this task, we need the sub-graphs informa-
tion. As we mentioned in Section III.A, the adjacency list
is the way we store our graph. Therefore, the nearest file
format to that representation is METIS format. For instance,
Figure 2 shows a sample unweighted undirected graph. The
annotations in Figure 2 start with L, which is the line number,
and is not part of the METIS format (it was shown for clarity
purposes). The first line, L0, starts with two numbers: the
number of vertices and the number of edges. The rest of the
lines, L1 to L7, each of them represents an adjacency list for
its corresponding vertex. For example, L3 shows the adjacency
list for vertex 3 ({(v3, v5), (v3, v4), (v3, v2), (v3, v1)} is the
edges of vertex 3).

All of our sub-graphs are stored in a METIS format and
show relationships between entities. Therefore, our dataset

Fig. 2. Sample METIS format for an unweighted undirected graph with 7
vertices and 11 edges. For example, L3 shows the adjacency list for vertex 3.
Lines annotated with a label L, which is not part of the format (it is shown
for the clarity purposes).

type is Network. The only available data type in this dataset is
key-value since it shows to identify an entity, i.e. vertices and
all its connected edges. It is not numerical since order doesn’t
have any meaning for the vertices.

The number of partitions, K, is a parameter that a user
specifies at the beginning of the partitioning. It ranges from
2 to the number of available computation resources. For
example, if the partitioner will be deployed in a distributed
environment, where we have ten workers, then K will be set
to 10. However, in most scenarios we set K between 2 and
256 (2 <= K <= 256).

Each key in our dataset is an integer, representing a unique
entity, i.e. a vertex. Our values are a list of integers that
show the corresponding vertex numbers for an edge. While
our key and values are integers, it doesn’t mean that there is
an ordering for them. The range of our keys is bounded by
the number of vertices in our graph, i.e. |V |. Each member
of our adjacency list is a vertex number and consequently is
an integer. However, each adjacency list is has a length that
corresponds to the degree of its vertex. This length depends
on the maximum degree in a graph.

IV. SOLUTION

ParViz provides two different scenarios, which are associ-
ated with Task 1 and Task 2, for users to interact with it,
Figure 3. These two different scenarios are separated with two
different user journeys chosen based on the first action of the
user, i.e. a user at the beginning need to select one of Task 1
or Task 2.

A step-by-step journey for Task 1, after the end-user chose
it, is as follows. First, a user needs to select the path to
his dataset file. Then, he clicks on a button to start the
visualization. Since it might be a lengthy process, there is a
loading window. After ParViz is done with the visualization,
the result will be shown.

Since the number of rows could be large, we have to sample
our input data to deal with this situation. After sampling of
our input data, there will be three rows There are T rows, the
number of iterations for that partitioner, and three columns,
DF, LB* and EC*. LB* and EC* are normalized values of
their corresponding LB and EC. All normalized values are
shown using the saturation channel of a single hue. We are

Fig. 3. An sketch of ParVis. Depending on the task, user will be navigated to a different window. For Task 1, if a user hovers over a row, the corresponding
values are shown that row.

using the same hue for all of these three attributes to avoid
information overload.

The user can interact with the idiom by hovering on it. As
he hovers on different rows, the corresponding metrics vector
is shown to him. The values will be shown on the right-hand
side of the idiom. There is a scroller in the idiom to navigate
through the rest of the data set. Since the number of rows
could be high, we adopt a lazy loading approach for loading
the next batch of data.

For Task 2, the first three steps are the same as Task 1.
The final idiom shows a graph where the vertices are partition
numbers and the edges are edges that cross two partitions. The
thickness of these edges corresponds to the numbers crossing
edges. Also, each node colour is encoded with the duplication
factor, DF (Section III.D). Since DF is a value between 0 and
1, we use a saturation channel for a single hue.

V. MILESTONES

In this section, we provide an estimate of how we are going
to implement the ParVis, Table V. We try to adopt an iterative

approach for designing and implementing the system, for each
task phase. Since we use D3.Js as our tool and there is no
familiarity in our team, we need to learn the framework first.
Then, we build our sketch skeleton, 3. This skeleton is not
functional; however, the navigation works. Then, we need to
prepare each dataset for each task. Finally, in the last two
phases, we work on our tasks, i.e. Task 1 and Task 2. We
start with Task 1 since it is our main goal in this project.
However, there is an estimation for Task 2, which we try to
aim at whenever we are done with the first one.

TABLE I
PHASES OF PARVIS AND ITS ESTIMATIONS

Phase Estimation (hours)
Learning D3.Js 8

Building the skeleton of ParVis 8
Extracting Dataset 8
Working on Task 1 40
Working on Task 2 16

Paper Writing 8
Total 88

