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Abstract— Graph analysis is an important research area due to the prevalence of graphs for modelling relationships. Real-world
graphs are big in terms of the number of nodes and edges, and this causes many problems for fast graph analysis. One approach for
dealing with this complexity is to divide a big graph into smaller graphs. The algorithms that perform this division are called graph
partitioners. While there is ongoing research for designing new partitioners, little effort has been made to visualize their underlying
algorithms to provide better understandability for future algorithm designers. ParViz is a visualization tool that helps algorithm designers
to understand the underlying behaviour of partitioners through visualizing their partitioning metrics and final results.

Index Terms—Graphs, Graph Partitioners, Line Chart, Heatmap, Scalability

1 INTRODUCTION

Graphs are considered as one of the fundamental mathematical models
for describing relationships. Social media platforms, such as Face-
book or Twitter, are good examples of this type of modelling. Usually,
in these graphs, people are vertices, and edges are relationships be-
tween them, which are defined based on a specific definition, such as
friendship or follower-followee. Social media is not the only field that
benefits from graphs; bioinformatics, astrology, or machine learning
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are a few examples of domains that use graphs.
During the past decades, graphs have become the interest of many

researchers in different areas. However, the questions that are asked
share the same type. For example, detecting communities in a graph,
counting the number of triangles and computing the PageRank are
among the most common frequently asked questions. Consequently,
various graph analysis algorithms have been implemented to answer
different questions about graphs. Also, researchers and companies have
built many specialized systems for graphs, such as GraphChi [1] or
Pregel [?], capable of storing graph data efficiently and running graph
algorithms.

Besides optimizing the algorithms or data structures, parallel compu-
tation models are used to achieve high performance since they can run
an algorithm in parallel or multiple queries simultaneously. Partitioning
a graph into a set of sub-graphs is considered a common approach for
parallel computation. Graph partitioners are algorithms that create a



set of sub-graphs from a graph, which we call partition.
There are three types of partitioners: Vertex Partitioners, Edge Parti-

tioners, and Hybrid Partitioners. Vertex Partitioners assign each vertex
and its connected edges to a partition. On the other hand, Edge Parti-
tioners assign each edge and its connected vertices to a partition. Also,
there are Hybrid Partitioners that assign edges or vertices to partitions.

To devise new partitioners, algorithm designers need to know each
partitioning algorithm and its corresponding partitioning quality. Un-
derstanding a partitioning algorithm means that one should know the
strategy of an algorithm for partitioning; what the final partitioning
looks like. Partitioning quality is a set of defined metrics, which are
calculated after a partitioner is done. These metrics show how good
partitioning is and what trade-offs we paid for that. Having these two
in hand, algorithm designers can devise new algorithms or improve
current ones. However, it is not as easy as it seems since there is no
standard way of showing the partitioning result or analyzing the metrics
of a partitioner.

Suppose we want to see the nodes’ assignments of partitioning:
which node and its edges belong to which partition. Since there is no
standard method for showing the result of partitioning, an algorithm
designer has to write custom scripts to achieve his goal. For example,
a common approach for representing graphs is the METIS format, in
which the number of nodes and edges along with edge information is
provided in a file. The partitioner could produce the resulting partitions
in the METIS format, and the algorithm designer can use them as
inputs to his scripts. Furthermore, the initial goal of seeing the nodes’
assignments could be more difficult when the number of edges or nodes
is significant. This problem exacerbates when our goal is to compare
two different nodes’ assignments by two different partitioners.

Partitioning quality can be measured via a set of metrics and is used
as a standard approach for choosing a partitioner for a task. Therefore,
understanding the behaviour of algorithms through the lenses of these
metrics becomes crucial. However, these metrics are calculated at the
end of partitioning. Consequently, the changes to these metrics during
the partitioning process are missed. For algorithm developers, it is
useful and helpful to see intermediate changes since it helps them to 1-
understand the behaviour of each partitioner as it partitions the graph
and 2- provide a way to compare two algorithms at a more detailed
granularity. Unfortunately, the only way of accessing intermediate
changes is via analyzing ad hoc logs in a partitioner’s codebase, which
could be time-consuming.

ParViz is a viz tool to address mentioned challenges for understand-
ing graph partitioners. At the first step, ParViz implements a tool for
visualizing the quality metrics of a graph partitioner as they evolve.
Having this feature, algorithm designers can understand the behaviour
of each partitioner and compare them with each other.

2 RELATED WORK

3 DOMAIN

This section proceeds into the terminologies of the graph partitioners
and provides background information for the rest of this paper. Next,
in the task abstraction, we describe dataset type and data types, along
with a description of the project’s goal.

3.1 Graphs
Graphs are commonly used as a mathematical tool for modeling
relationships: vertices show entities and edges show relationships
between vertices. A graph G is defined as G = (V,E), where
V is the set of vertices in the graph, V = {v1,v2, ...,vN}, and E
is the set of edges connecting two vertices in that graph, E =
{(vi,v j)|vi,v j ∈V where i, j = 1, ...,N}. Size of G is determined by
its number of vertices and edges, which are denoted as N and M respec-
tively (|V |= N, |E|= M). If for every (vi,v j), there is a corresponding
edge (v j,vi), we say the graph is undirected; otherwise, it is directed.
Also, there are weighted graphs, where each edge, ei j, can have an
associated weight, wi j. In this project, we are focusing on undirected
and unweighted graphs.

There are various methods for storing graphs. Adjacency list is a
data structure that stores a graph in the form of a vertex and all its

connected edges. Figure 2 shows the adjacency list for the vertex 3. As
it shows, there are edges between 3 and 1,2,5, and 10. For storing a
graph in the form of adjacency list, we store all vertices and their edges
in this form.

In an undirected graph, the degree of a vertex is the number of edges
it has. In Figure 2, the degree of vertex number 3 is four since there are
four edges from vertex 3 to other vertices.

Fig. 2. Adjacency list for the vertex 3. Vertex 3 has edges to vertices 1,
2, 5, and 10.

We use adjacency list for storing graph data for the rest of this
project. Also, when we are mentioning about graph data, we mean the
adjacency list unless otherwise stated.

3.2 Graph Partitioning
Partitioning of a graph means to create multiple sub-graphs from the
original one. The set {P1,P2, ...,Pk} is a k-partition of a graph G if each
Pi is a sub-graph of G :

Pi = (Vi,Ei) , Vi ⊂V and Ei ⊂ E (1)

In other words, in a k-partitioning algorithm, we create K number of
sub-graphs from the original graph G. Each created sub-graph has to
have a set of vertices and edges that are subset of the original one.

There are different approaches for partitioning a graph: Vertex Par-
titioning, Edge Partitioning and Hybrid Partitioning. In Vertex Parti-
tioning, a partitioner assigns each vi ∈V and all its connect edges to
a partition. Therefore, for an edge (vi,v j), if both of vi and v j were
assigned to two different partitions, we would have a duplicated edge,
i.e. (vi,v j), in their corresponding partitions. However, in Edge Parti-
tioning, a partitioner assigns each edge (vi,v j) ∈ E and its vertices, i.e.
vi and v j , to a partition. Similarly, if two edges shared the same vertex,
we would have duplicated vertices in different partitions. Finally, in
hybrid partitioning, we assign both edges and vertices to different par-
titions, and, consequently, we would have both duplicated edges and
vertices in each partition.

ParViz focuses on the Vertex Partitioning approaches since the num-
ber of vertices in graphs, which we use in this course project, are
relatively manageable compared to the large number of edges that
might exist.

3.3 Partitioning Metrics
Algorithm designers have introduced a variety of metrics for determin-
ing the quality of a partitioner. Due to the diversity of partitioners
themselves, it is not possible to have a set of metrics that are suitable
for all of them. Therefore, there are general metrics for determining the
quality of a partitioner that are calculated differently based on the type
of partitioner, e.g. Vertex Partitioning or Edge Partitioning. Among
them, in this project, we are focusing on Duplication Factor (DF), Load
Balancing (LB) and Edge-Cut (EC).

Duplication Factor measures the ratio of duplicated edges with
respect to the original graph: sum of the total number of edges in each
partition to the total number of edges in a graph. Load Balancing
measure the load on the most loaded partition. Edge-Cut measure the
number of edges between two partitions where the vertices of those
edges do not belong to the same partition.

We can formulate these three metrics in terms of a vector of the
following form:

MetricsVector =

DF
LB
EB

 (2)



All of these metrics are usually measured at the end of the parti-
tioning. If one wanted to compare the quality of a partitioner with
another one, one could do that by comparing their corresponding met-
rics. However, it is possible to measure all of these metrics as the
partitioner makes progress. At the end of each iteration of partitioning,
as the partitioner has decided about a node’s partition, we can calculate
equation 2. Therefore, we can have an array of these metrics vectors:

MetricsVectori =

DFi
LBi
ECi

 , i = 1,2, ...,T (3)

T is the total number of iterations of a vertex partitioning. For
vertex partitioners, it is the number of vertices of a graph since vertex
partitioners assign each node to a partition in each iteration of the
algorithm. Therefore, the total number of iterations equals to the total
number of vertices.

3.4 Data

There are two different datasets for this project. The first one is a log
file for a partitioner name Fennel. The input graph of this partitioning
is the Yahoo! Messenger graph, which has about 2 million nodes and
4 million edges. The graph is undirected. Nodes in this graph are the
users of the messenger and edges show whether one of the users is a
contact of the other one.

Our dataset type is Table with Items and Attributes, where each row
corresponds to a step/iteration of our partitioner. The first two columns
show the vertex number and its assigned partition, and the three leading
columns show our metrics vector after the node assignment was done.

The number of rows in this dataset is equal to the number of vertices
in our graph, i.e. |V |. Therefore, the dimensionality of our dataset is
|V |×5. In this dataset, the number of rows is two million.

The number of partitions, K, is a parameter that a user specifies at
the beginning of the partitioning. It ranges from 2 to the number of
available computation resources. For example, if the partitioner will
be deployed in a distributed environment, where we have ten workers,
then K will be set to 10. However, in most scenarios we set K between
2 and 256 (2 <= K <= 256). In this dataset, the number of partitions
is K = 3.

Since the number of iterations or steps for this partitioner was high,
we had to sample our datapoints with a fixed frequency. The frequency
of sampling in this project was 1000, which means for every 1000 steps,
we only select the last 1000th step.

The second dataset is also of type Table with Items and Attributes,
where each row corresponds to the number of edge cuts between two
partitions. Each row has two partition numbers and the number of edge
cuts for them.

4 TASK ABSTRACTION

In this section, we go over the task abstraction in ParViz. There are
three tasks that this project is designed to do.

4.1 Task 1

While the approaches and heuristics of partitioners are different, they
try to optimize the partitioning metrics(Section 3.3) in their underlying
algorithms. Therefore, being able to see these evolutions not only can
help understand a partitioner’s behaviour but also let us create a new
one better.

4.2 Task 2

The second task tries to give an overview of how partition sizes grow
as the partitioner tries to fill each of them. Since not all partitioners
partition a graph into similar sub-graphs, the sizes of the final partitions
are different. As to better understand the behaviour of a partitioner, it
is helpful to see how each partition grows.

What: Data Table; DF, LB, EC quantitative attributes

What: Derived Partitioner Steps: ordered key attribute
Normalized Values of DF, LB, EC

How: Encode
Express DF, LB, EC;
using a heat map with different hues
and changing saturation

How: Reduce Sampled at every 1000 point
Why: Task Overview of changes in metrics
Scale Items: 2K

Table 1. What-Why-How analysis for Task 1 in Figure 1

4.3 Task 3
In a vertex partitioner, edges are being duplicated because, in each
iteration of partitioning, two vertices of the same edge might be as-
signed to two different partitions. Edges that spans two partitions incur
communication cost since if a vertex needs the value of the other vertex,
it has to ask a remote partition to receive it. Therefore, in the third task,
we are interested in the number of edge cuts between two partitions.

5 SOLUTION

In ParViz, we used the D3js library as the visualization tool and the
NodeJs framework as the backend technology. A user provides two
input files in the CSV format, each corresponding to the dataset dis-
cussed in section 3.4. Figure 1 is the result of running ParViz on the
dataset described in section data. In this section, we walk through these
six idioms of Figure 1 as an example for the mentioned tasks in section
4.

5.1 Metrics Heatmap
The metrics heatmap, Figure 1 part (a), shows the overview of changes
in metrics during the partitioning(Task 1). The x-axis shows the sam-
pled step of the partitioner, and the y-axis values show the normalized
values of metrics. The purpose of this idiom is to give an overview of
changes in metrics. Each metric is encoded with a different hue and
its normalized values are encoded with different saturation. 1. The
lower these values are the better they would be. Table 1 shows the
What-Why-How analysis this idiom.

Based on the shown heatmap in Figure 1, the EC metric reaches its
maximum value early in the partitioning process, and then its value
decreases. The other two metrics show that their values go to their
maximum value early on and do not change after that.

5.2 Metrics Line Charts
The metrics heatmap might not be helpful given that the colours are
saturated early. Therefore, three completing line charts separately
express the changes in these metrics; part (b), (c) and (d) in Figure 1.
The x-axis shows the sampled step of the partitioner, and the y-axis
values show the normalized values of metrics. The goal of this idiom
is to complete the shortcomings of the metrics heatmap. Each metric
is encoded with the same hue as its corresponding one in the heatmap.
Table 2 shows the What-Why-How analysis for only DF metrics. The
remaining LB and EC follow the same approach.

As it is shown, the EC metric reaches its maximum value and then
it started to decrease. EC shows the sum of the number of edges that
cross two partitions. If the EC value is high, it means that a node
might need to ask a remote partition for data in process of running an
algorithm. Asking remote nodes for data is resource-consuming and
incurs communication costs. Therefore, the lower it is the better it
would be.

The interpretation of this behaviour is that this graph partitioner,
Fennel, is trying to decrease the number of edge cuts as soon as its
maximum value is approaching. This observation was not obvious in
previous studies by the author.

5.3 Partition Sizes
For Task 2, we again use the line chart to see changes in partition
sizes at the end of each step of our partitioner; part (e) Figure 1. The



What: Data Table;
DF quantitative attributes

What: Derived Partitioner Step: Ordered key attributed
Normalized DF

How: Encode
Express DF horizontally;
the x-axis is the steps
the y-axis shows the DF value

How: Reduce Sampled every 1000 steps
Why: Task Overview of changes in DF
Scale Items: ∼2K

Table 2. What-Why-How analysis for Task 1 in Figure 1

What: Data
Table;
NodeId key attribute
PartNum categorical key attribute

What: Derived
Matrix of the size: 2K * 3
Each cell is shows the number nodes
at a specific step in a specific partition

How: Encode Facet; Superimpose the size of partitions
for at each step

How: Reduce Sampled every 1000 steps
Why: Task Overview of changes in partitions size
Scale Items: ∼2K * 3
Table 3. What-Why-How analysis of the Task 2 in Figure 1

x-axis shows the sampled step of our partitioner and the corresponding
y-axis shows the number of nodes in each partition. For each partition,
we used different line charts with different hues. All line charts are
superimposed. The Table 3 shows the What-Why-How analysis of this
idiom.

As the chart shows, the red line chart, which corresponds to partition
1, is being filled first by the partitioner, while the other two are empty.
This shows that the preference of this partitioner is to fill the first
partition into a number and then try to fill the other ones. However,
the maximum partition size of partition 1 had been reached when the
partitioner switched from partition 1 to another one. This observation
was not seen by the author before that and is considered as helpful
insight for further study of the partitioner behaviour. The problem with
the chart is that since Partition 2 and Partition 3 have about the same
size, their corresponding charts hide each other.

5.4 EC Matrix Heatmap
Part (f) of Figure 1 is designed to answer the question for Task 3.
The heatmap shows the partition edge cut number. The x-axis and
y-axis show the partition number and the corresponding cell shows the
normalized value of the EC metric for that cell. This heatmap uses
two different hues: one for when the partition number is different, and
the other one is the diagonal value where we have the same partition
number. Also, for each hue, we use saturation to show its size.

The diagonal values of this heatmap show that how many edges have
their vertices inside their partition: there is no need to ask a remote
partition for a vertex value. The higher the saturation is, the better the
situation would be. For example, in Partition 1 concerning Partition 2
or Partition 3, an algorithm may incure less communication cost when
it is running since all vertice data would be available there.

In non-diagonal cells, it is the opposite: the higher the saturation
is the worst the situation is. However, these values would be helpful
in comparison with other cells. For example, the number edge cuts
between Partition 2 and Partition 3 is less than Partion 1 and Partition 2.
Therefore, if a running algorithm needs only Partition 2 and Partition
3 data, it would be faster than the case if it needed Partition 2 and
Partition 1 data. This observation was not obvious to the author before
this work.

6 IMPLEMENTATION AND MILESTONES

In this section, we provide an estimate and actual time spent on imple-
menting the ParVis, Table 6. I tried to adopt an iterative approach for

What: Data

Table;
Part1, Part2 categorical key attribute
ec quantitative attribute
nedge part quantitative attribute
nedge quantitative attribute

What: Derived
Matrix of the size: 3 * 3
Each cell shows the normalized
EC between two corresponding partitions

How: Encode Express the normalized ec value using a heat map
Why: Task Overview of ec in partitions size
Scale Items: 3 * 3

Table 4. What-Why-How analysis of for Task 3 in Figure 1

Table 5. Work Breakdown: the estimated and actual time spent on
building ParViz. Every 8 hours corresponds to a full day work

Phase Estimation (hours) Actual (hours)

Learning D3.Js 8 8

Building the skeleton of ParVis 8 3

Extracting Dataset 8 18

Task 1 40 40

Task 2 16 16

Task 3 8 12

Write-Up 8 16

Total 96 113

designing and implementing ParViz, for each task phase. Since I use
D3.Js as the visualizing library and there is no familiarity in my team, I
needed to learn the framework first.

After learning the basics of D3Js, I built the prototype of the system.
However, soon after implementing the prototype, I realized that I need
to change the idioms and find better approaches for visualizing the
results. The main problems with the first prototype were:

• A Wrong Idiom: The initial idea was to show each step of the
partitioning process using a heatmap. There were three columns
each representing one of three metrics. The number of rows was
the same as the number of nodes in a graph. Each cell used a
different hue and saturation to encode the value of a metric in
that cell. A user could hover over a cell to see complementary
information, such as the node id, its assigned partitioner, the
normalized and un-normalized values of metrics. However, after
seeing the result I realized that the granularity of this approach is
too much and it is not helpful or even useful.

• Lack of Scalability: To ensure my approach works properly, I
used a small graph with 7 nodes and 11 edges to ParViz. However,
after I increased the size of the graph gradually, I noticed that I
need to my approach from using the whole data to the sampled
version of data.

I used NodeJs as a web framework to set up the backend for ParViz.
I chose NodeJs since both D3Js and NodeJs come from the same
technology family: both of them were written in Javascript.

7 CONCLUSION

ParViz is a tool for visualizing the partitioning process of a vertex parti-
tioner. The main goal of this project is to provide an easy understanding
of the behaviour of a vertex partitioner. It gives an overview of the
changes of three key partitioning metrics in four different idioms: a
heatmap where one can see all the metrics in the same idiom, three
different line charts for each metric, a line chart that shows the growth
of partitions sizes, and heatmap that shows the corresponding edge-cut
number between two partitions.



ParViz could reveal insights that were not obvious at first to the
author of this paper showing that the final result was helpful for under-
standing the behaviour of the testing partitioner named Fennel.

8 FUTURE WORK

To the best of my knowledge, ParViz is the first visualization tool that
has been built for graph partitioners. The prototype focused on a simple
version of the idea to test its feasibility and how much it could be useful.
Therefore, there are limitations for this prototype that forms the future
work of this project. The following are potential ideas for making
ParViz better.

• ParViz is limited to vertex partitioners while there are two other
major categories of partitioners: Edge Partitioners and Hybrid
Partitioners.

• A sampling of input data is crucial for ParViz since it cannot ren-
der log files with millions of steps. Therefore, one potential future
work is adding lazy loading or dynamic sampling techniques to
deal with graphs with millions of nodes.

• Due to the available screen area, ParViz cannot render idioms for
Task 2 and Task 3 with distinguishable line charts or heatmap
when the number of partitions is large, e.g more than 256. One
way of overcoming this limitation is by filtering partitions based
on a certain threshold value.

• ParViz lacks the interactivity that a user might need. The inter-
activity requirement comes from the fact that a user might be
interested in more information that might have been discarded
due to sampling.

• Understanding the behaviour of an algorithm is helpful for de-
signing new ones. However, it is also valuable to be able to
compare two different algorithms against each other. Jaxtapous
idioms could be considered for this purpose, but also it would
be challenging because of the increasing number of items in an
idiom.

• The colour selection for heatmaps should be improved, especially
there has to be a better colour schema for the metrics heatmap.
I have tried different color schemas but could not decide on a
informative one.

• There should be more legends and extra information on each
idiom to help the user to understand each idiom.
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