
PartViz: Visualizing Graph Partitioners
Hadi Sinaee

University Of British Columbia
sinaee@cs.ubc.ca

Abstract—Once upon time ...

I. INTRODUCTION

Graphs are considered as one of the fundamental math-
ematical models for describing relationships. Social media
platforms, such as Facebook, Twitter, or Pinterest, are good
examples of these relationships where people are entities in a
graph and their relationship modeled after a specific definition,
such as friendship or follower-followee. Social medias are
not the only fields that benefit from graphs; bioinformatics,
astrology, or machine learning are a few examples of domains
that use graphs.

During the past decades, the importance of using graphs has
become the interest of researchers, and various graph analysis
algorithms have been introduced to answer different questions
about graphs; to name a few of them, there are algorithms
detecting communities in a graph, counting the number of
triangles, computing the PageRank. Also, researchers and
companies have built many specialized graph systems, such
as GraphChi, Pregel, or GraphOne, which are capable of
storing graph data and/or running graph algorithms. All of
these systems try to show high performance when it comes to
running graph algorithms.

To achieve high performance, besides optimizing the al-
gorithms or data structures, graph systems rely on parallel
computation models in which an algorithm run in parallel or
multiple queries can be executed simultaneously. A common
approach is to partition a graph into sub-graphs, where algo-
rithms can run in parallel on each of them. Graph partitioners
are the algorithms that create a set of sub-graphs from a graph.
There are different partitioning algorithms each of which has
its strategy to create those sub-graphs. Vertex Partitioners
assign each vertex and its connected edges to a partition,
whereas, Edge Partitioners assign each edge with its connected
vertices to a partition. Also, there are Hybrid Partitioners that
assign edges or vertices to partitions.

For algorithm designers to devise new partitioners, they
need to know each partitioning algorithm and its corre-
sponding partitioning quality. Understanding of a partitioning
algorithm means that one should know the strategy of an
algorithm for partitioning; how the final partitioning looks like.
Partitioning quality, on the other hand, are a set of defined
metrics, which are calculated after a partitioner is done. These
metrics show how good a partitioning is and what trade-offs
we paid for partitioning. Having these two in hand, algorithm
designers are able to devise new algorithms or improve current
ones. However, it is not as easy as it seems since there is no

standard way of showing the partitioning result or analyzing
metrics of a partitioner.

Suppose we want to see the nodes assignment of a par-
titioner: each node and its edges belong to which partition.
Since there is no standard method for providing the result
of a partitioning, an algorithm designer has to write custom
scripts to achieve his goal. For example, a common method for
graph representation is the METIS format, which the number
of nodes and edges along with edge information are provided
in a file. The partitioner could produce the resulting sub-graphs
in the METIS format, and the algorithm designer can use them
as inputs to his scripts. Also, the initial goal of seeing the
nodes assignment could be hard when the number of edges or
nodes are significant. This problem exacerbates when our goal
is comparing two different nodes assignments by two different
partitioners.

Quality metrics of graph partitioners are the common ap-
proach for choosing a partitioner. Therefore, understanding the
behavior of algorithms through the lenses of these metrics
becomes crucial. However, these metrics are calculated at the
end of partitioning, and the changes of these metrics during
the partitioning process are missed. For algorithm developers,
it is useful and helpful to see these intermediate changes since
it helps them to 1- understand the behavior of each partitioner
as it partitions the graph, and 2- provide a way to compare two
algorithms at a more detailed granularity. Unfortunately, the
only way of accessing intermediate changes is via analyzing
handwritten logs in a partitioner’s code base, which could be
time consuming.

ParViz is a viz tool to address mentioned challenges for
understanding graph partitioners. At first step, it provides a
tool for visualizing the quality metrics of a graph partitioner
as it evolves. In its second step, it provides a way to visualize
the nodes assignment of an algorithm. Having these features,
algorithm designers can understand behaviour of each parti-
tioner and compare them with each other.

II. RELATED WORK

III. DOMAIN AND TASK ABSTRACTION

This section goes deeper into terminologies of the graph
partitioners and provides background information for the rest
of this paper. Then, it finishes this section with the task
abstraction. It describes dataset type and data types along with
a description of the project’s goal.



A. Graphs

Graphs are commonly used as a mathematical tool for
modeling relationships: vertices show entities and edges
show relationships between vertices. A graph G is de-
fined as G = (V,E), where V is the set of vertices
in the graph, V = {v1, v2, ..., vN}, and E is the set
of edges connecting two vertices in that graph, E =
{(vi, vj)|vi, vj ∈ V where i, j = 1, ..., N}. Size of G is deter-
mined by its number of vertices and edges, which are denoted
as N and M respectively(|V | = N, |E| = M ). If for every
(vi, vj), there is a corresponding edge (vj , vi), we say the
graph is undirected; otherwise, it is directed. Also, there are
weighted graphs, where each edge, eij can have an associated
weight, wij . In this project, we are focusing on undirected and
unweighted graphs.

There are various methods for storing graphs. Adjacency list
is a data structure that stores a graph in the form of a vertex
and all its connected edges. Figure 1 shows the adjacency list
for the vertex 3. As it shows, there are edges between 3 and
1,2,5, and 10. For storing a graph in the form of adjacency
list, we store all vertices and their edges in this form.

In an undirected graph, the degree of a vertex is the number
of edges it has. In Figure 1, the degree of vertex number 3 is
four since there are four edges from vertex 3 to other vertices.

Fig. 1. Adjacency list for the vertex 3. Vertex 3 has edges to vertices 1, 2,
5, and 10.

We use adjacency list for storing graph data for the rest of
this project. Also, when we are talking about graph data, we
mean the adjacency list unless otherwise stated.

B. Graph Partitioning

Partitioning of a graph means to create multiple sub-graphs
from the original one. The set {P1, P2, ..., Pk} is a k-partition
of a graph G if each Pi is a sub-graph of G :

Pi = (Vi, Ei) , Vi ⊂ V and Ei ⊂ E (1)

In other words, in a k-partitioning method, we create K
number of sub-graphs from the original graph G. Each created
sub-graph has to have a set of vertices and edges that are subset
of the original one.

There are different approaches for partitioning a graph:
Vertex partitioning, Edge Partitioning and Hybrid Partitioning.
In Vertex Partitioning, a partitioner assigns each vi ∈ V and
all its connect edges to a partition. Therefore, for and edge
(vi, vj), if both of vi and vj were assigned to two different
partitions, we would have a duplicated edge, i.e. (vi, vj), in
their corresponding partitions. However, in Edge Partitioning,
a partitioner assigns each edge (vi, vj) ∈ E and its vertices,
i.e. vi and vj , to a partition. Similarly, if two edges shared the
same vertex, we would have duplicated vertices in different

partitions. Finally, in hybrid partitioning, we assign both edges
and vertices to different partitions, and, consequently, we
would have both duplicated edges and vertices in each par-
tition. ParViz focuses on the Vertex Partitioning approaches.

C. Node Assignment

A Vertex Partitioner assigns each vertex and all of its
connected edges to a partition. As described in Section B,
the result of vertex partitioning causes duplicated edges since
it might be the case that an edge having two vertices belonging
to two different partition. The final partitioning result for a k-
partitioning method is a set of K sub-graphs, {P1, P2, ..., Pk},
of the form in equation 1. Also, as we described in Section
A, each Pi = (Vi, Ei) is stored in the adjacency list format
illustrated in Figure 1.

If one is interested in finding the nodes assignment of a k-
partitioning, one has to iterate all K sub-graphs and deal with
each duplicated edge. As the number of partitions and the
size of a graph could be large, extracting the node assignment
could be challenging.

D. Partitioning Metrics

Algorithm designers have introduced variety of metrics for
determining the quality of a partitioner. Due to the diversity
of partitioners themselves, it is not possible to have a set of
metrics that are suitable for all of them. Therefore, there are
general metrics for determining quality of a partitioner that
are calculated differently based on the type of a partitioner,
e.g. Vertex Partitioning or Edge Partitioning.

Among them, in this project, we are focusing on Duplication
Factor(DF), Load Balancing(LB) and Edge-Cut(EC). Duplica-
tion Factor measures the ratio of duplicated edges with respect
to the original graph. Load Balancing measure the number of
vertices per partition. Edge-Cut measure the number of edges
between two partitions where the vertices of those edges do
not belong to the same partition. We can think of these three
metrics in terms of a vector:

metrics vector =

DF
LB
EC

 (2)

All of these metrics are usually measured at the end of
the partitioning. If one wanted to compare the quality of a
partitioner with another one, one could do that by comparing
their corresponding metrics. However, it is possible to measure
all of these metrics as the partitioner makes progress. At the
end of each iteration of a partitioning, as the partitioner has
decided about a node’s partition, we can calculate equation 2.
Therefore, we can have a series of these metrics vectors:

metrics vectori =

DFi

LBi

ECi

 , i = 1, 2, ..., T (3)

T is the total number of iterations of a vertex partitioning.
For vertex partitioners, it is the number of vertices of a graph.



E. Task Abstraction

In this section, we go over the task abstraction in ParViz.
There are two tasks that this project aimed to do.

1) Task 1: How was a metric vector evolving during a
partitioning process? One of the challenges for understanding
a graph partitioner is to see how the metric vector has been
evolved during the partitioning. If a programmer wants to
understand it, it has to go through the whole log and look
for a finding changes.

2) Task 2: How does the final nodes assignment look
like? The result of partitioning is usually accessible after the
partitioner is done. The final result usually is available as part
of internal data structure of the partitioner or exported as a file.
Therefore, putting all information about the nodes assignment
of an algorithm is hard.

F. Data

There are two different dataset for this project. The first
one deals with Task 1 in which we are looking for a way to
see how a metrics vector evolve during the partitioning. The
second one deals with Task 2 in which we are looking for the
final nodes assignment.

1) Task 1: For this task, we have a tabular dataset where
each row corresponds to an iteration of our partitioner. The
first two columns show the vertex number and its assigned
partition. The remaining three columns show our metrics
vector after the node assignment.

The number of rows in this dataset is equal to the number
of vertices in our graph, i.e. |V |. Therefore, the dimensionality
of our dataset is |V |×5. In this project, we are going to focus
on graphs with less than 100M vertices.

2) Task 2: For this task, we need the sub-graphs informa-
tion. As we mentioned in Section III.A, the adjacency list
is the way we store our graph. Therefore, the nearest file
format to that representation is METIS format. For instance,
Figure 2 shows a sample unweighted undirected graph. The
annotations in Figure 2 start with L, which is the line number,
and is not part of the METIS format(it was shown for clarity
purposes). The first line, L0, starts with two numbers: the
number of vertices and the number of edges. The rest of the
lines, L1 to L7, each of them represents an adjacency list for
its corresponding vertex. For example, L3 shows the adjacency
list for vertex 3 ({(v3, v5), (v3, v4), (v3, v2), (v3, v1)} is the
edges of vertex 3).

All of our sub-graphs are stored in a METIS format and
shows relationships between entities. Therefore, our dataset
type is Network. The only available data type in this dataset
is key-value, since it shows to identify an entity, i.e. a vertices
and all its connected edges. It is not numerical since ordering
doesn’t have any meaning for the vertices.

The number of partitions, K, is a parameter that a user
specifies at the beginning of the partitioning. It ranges from
2 to the number of available computation resources. For
example, if the partitioner will be deployed in a distributed
environment, where we have ten workers, then K will be set

Fig. 2. Sample METIS format for an unweighted undirected graph with 7
vertices and 11 edges. For example, L3 shows the adjacency list for vertex
3. Lines annotated with a label L, which is not part of the format(it is shown
for the clarity purposes).

to 10. However, in most scenarios we set K between 2 and
256(2 <= K <= 256).

Each key in our dataset is an integer, representing a unique
entity, i.e. a vertex. Our values are a list of integers that
show the corresponding vertex numbers for an edge. While
our key and values are integers, it doesn’t mean that there
an ordering for them. The range of our keys is bounded by
the number of vertices in our graph, i.e. |V |. Each member
of our adjacency list is a vertex number and consequently
is an integer. However, each adjacency list is has a length
corresponds to the degree of its vertex. This length depends
on the maximum degree in a graph.

IV. SOLUTION

ParViz provides two different scenarios, which are associ-
ated with Task 1 and Task 2, for users to interact with it,
Figure 3. These two different scenarios are separated with two
different user journeys chosen based on the first action of the
user, i.e. a user at the beginning need to select one of Task 1
or Task 2.

An step-by-step journey for Task 1, after the end user chose
it, is as follows. First a user needs to select the path to his
dataset file. Then, he click on a button to start the visualization.
Since it might be a lengthy process, there is a loading window.
After ParViz is done with the visualization, the result will be
shown. There are T rows, the number of iterations for that
partitioner, and three columns, DF, LB* and EC*. LB* and
EC* are normalized values of their corresponding LB and EC.
All normalized values are shown using the saturation channel
of a single hue. We are using the same hue for all of these
three attributes to avoid information overload.

The user can interact with the idiom by hovering on it. As
he hovers on different rows, the corresponding metrics vector
is shown to him. The values will be shown on the right hand
side of the idiom. There is an scroller in the idiom to navigate
through the rest of of data set. Since the number of rows could
be high, we adopt a lazy loading approach for loading the next
batch of data.

For Task 2, the first three steps are the same as Task 1.
The final idiom shows a graph where the vertices are partition
numbers and the edges are edges that cross two partitions. The
thickness of these edges corresponds to the numbers crossing



Fig. 3. An sketch of ParVis. Depending on the task, user will be navigated to a different window. For Task 1, if a user hovers over a row, the corresponding
values are shown that row.

edges. Also, each node color encoded with the duplication
factor, DF (Section III.D). Since DF is a value between 0 and
1, we use saturation channel for a single hue.

V. MILESTONES

In this section, we provide an estimate of how we are going
to implement the ParVis, Table V. We try to adapt an iterative
approach for designing and implementing the system, for each
task phases. Since we use D3.Js as our tool and there is no
familiarity in our team, we need to learn the framework first.
Then, we build our sketch skeleton, 3. This skeleton is not
functional; however, the navigation works. Then, we need to
prepare each dataset for each task. Finally, in the last two
phases, we work on our tasks, i.e. Task 1 and Task 2. We

start with Task 1 since it is our main goal in this project.
However, there is an estimation for Task 2, which we try to
aim at whenever we are done with the first one.

TABLE I
PHASES OF PARVIS AND ITS ESTIMATIONS

Phase Estimation(hours)
Learning D3.Js 8

Building the skeleton of ParVis 8
Extracting Dataset 8
Working on Task 1 40
Working on Task 2 16

Total 80


