ParViz: Visualizing Graph Partitioners

Hadi Sinaee

CPSC 547, December 2021 University of British Columbia

Graph Partitioners

- To create a new partitioner we need to understand the previous ones work
- Different metrics for graph partitioners:
 - Load Balance (LB)
 - Edge-Cuts (EC)
 - Duplication Factor (DF)
- These metrics are measured at the end of the partitioning process
 - It'd help to see how they were evolving

nodeId,partNum,df,lb,ec,part_edges,loaded_part_nodes 1404783.1.0.0000002451.0.0000015968.1.1.1 1739659,1,0.0000014709,0.0000031936,5,6,2 00213,1,0.0000029418,0.000004/903,10,12,5 615877,1,0.0000046578,0.0000063873,16,19,4 1037258,1,0.0000056384,0.0000079841,19,23,5 1065836,1,0.0000095608,0.0000095809,34,39,6 1697811,1,0.0000115220,0.0000111777,41,47,7 223282,1,0,0000122574,0,0000127745,43,50,8 706398,1,0.0000125026,0.0000143714,43,51,9 1187234,1,0.0000137283,0.0000159682,47,56,10 1354787,1,0.0000286824,0.0000175650,107,117,11 1405904, 1, 0, 0000318693, 0, 0000191618, 118, 130, 12 1849008.1.0.0000338305.0.0000207586.125.138.13 170694, 1, 0.0000357917, 0.0000223555, 132, 146, 14 874187,1,0.0000367723,0.0000239523,135,150,15 905472,1,0.0000421655,0.0000255491,156,172,16 1177215, 1, 0, 0000426558, 0, 0000271459, 157, 174, 17 1719979, 1, 0.0000455976, 0.0000287427, 168, 186, 18 1780232,1,0.0000544230,0.0000303395,203,222,19 1782500, 1, 0.0000590808, 0.0000319364, 221, 241, 20 790822,1,0.0000598162,0.0000335332,223,244,21 1001695, 1, 0.0000627580, 0.0000351300, 234, 256, 22 1049690, 1, 0.0000627580, 0.0000367268, 233, 256, 23 1313771,1,0.0000632483,0.0000383236,234,258,24 53174,1,0.0000676610,0.0000399205,251,276,25 148393, 1, 0.0000747703, 0.0000415173, 279, 305, 26 307904,1,0.0000769766,0.0000431141,287,314,27 326874,1,0.0000796732,0.0000447109,297,325,28 421588,1,0.0000808990,0.0000463077,301,330,29 457890,1,0.0000894792,0.0000479045,335,365,30 698470,1,0.0000919307,0.0000495014,344,375,31 705699,1,0.0000997754,0.0000510982,375,407,32 857700,1,0.0001002657,0.0000526950,376,409,33 941536,1,0.0001005109,0.0000542918,376,410,34 1184819, 1, 0.0001039429, 0.0000558886, 389, 424, 35 1362294, 1, 0.0001130134, 0.0000574855, 425, 461, 36 1510820, 1, 0. 0001169358, 0. 0000590823, 440, 477, 37 1552389,1,0.0001174261,0.0000606791,441,479,38 1634687,1,0.0001225742,0.0000622759,460,500,39

ParViz: Visualizing Graph Partitioners

"Build a viz tool to help algorithm designer understand the partitioning process of a partitioner."

Task Abstraction

- 1. How do partitioning metrics evolve during the partitioning process?
- 2. How does the size of partitions change over time?
- 3. What does the final partitioned graph look like?

Dataset

- 1. The input graph is the Yahoo! Messenger dataset which is a public dataset
 - a. An undirected graph
 - b. $~~\sim \! 1.9 M$ nodes and 4M edges
 - c. Nodes are users and the edges show at least one the nodes is a contact of another one
- 2. Number of partitions is three
- 3. The graph was partitioned by a vertex partitioner named Fennel
 - a. We assign each node and all of its edges into one partition
- 4. Dataset type is Table with Items and Attributes
 - a. Input format is CSV

What: Data	Table; DF , LB , EC quantitative attributes
What: Derived	 Partitioner Steps: Ordered key attribute Normalized Values of DF, LB, EC
How: Encode	Express DF , LB , EC horizontally; using a heat map with different hues and changing saturation
How: Reduce	Sampled at every 1000 point
Why: Task	Overview of changes in metrics
Scale	Items: ~200K

Metrics Heatmap

What: Data	Table; DF quantitative attributes
What: Derived	 Partitioner Step: Ordered key attributed Normalized DF
How: Encode	Express DF horizontally; the x-axis is the steps and y-axis shows the DF value
How: Reduce	Sampled every 1000 steps
Why: Task	Overview of changes in DF
Scale	Items: ~200K

What: Data	Table; Nodeld key attribute PartNum categorical key attribute	700,000 - 650,000 - 600,000 -
What: Derived	 Matrix of the size: 200K * 3 Each cell is shows the number nodes at a specific step in a specific partition 	550,000 - 500,000 - 450,000 - 350,000 - 300,000 - 250,000 - 200,000 - 150,000 -
How: Encode	Facet; Superimpose the size of partitions for at each step	100,000 – 100,000 – 50,000 –
How: Reduce	Sampled every 1000 steps	0
Why: Task	Overview of changes in partitions size	
Scale	Items: ~200K * 3	

What: Data	Table; Part1, Part2 categorical key attribute ec quantitative attribute nedge_part quantitative attribute nedge quantitative attribute
What: Derived	 Matrix of the size: 3 * 3 Each cell is shows the normalized ec between two corresponding partitions
How: Encode	Express the normalized ec value using a heat map
Why: Task	Overview of ec in partitions size
Scale	Items: 3 * 3

Limitations/Critiques

• Limitations

- Limited to vertex partitioners
- \circ ~ Doesn't scale for large graphs with more than 1M nodes after sampling
- Doesn't scale for large number of partitions, e.g. 256.
- Lack of interactivity
- Cannot compare two different algorithms against each other
- Critiques
 - Using RGB for different categories
 - D3 was not the right choice for the mentioned tasks
 - Some tasks are done manually, such changing the file
 - Lack of proper legends
 - Too many idioms