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I. INTRODUCTION

In the field of signal processing and audio analysis, there
are many standard techniques for visualizing a single sound
file. For example, simple waveplots can be used to see the
original amplitude of a sound signal with respect to time, or
spectrograms can be used to see the breakdown of individual
frequencies within a signal. Other techniques, such as chro-
magrams or Tonnetz networks, can be used to visualize pitch
relationships. However, these visualization techniques are not
always scalable. For example, spectrograms encode frequency
using vertical position, time using horizontal position, and am-
plitude with colour—while this is a useful method of exploring
sound frequency features in a single file, trying to compare
even ten spectrograms on a single screen becomes challenging.
Users must either reduce the size of the spectrograms, making
it difficult to differentiate features, or must scroll between them
and thus cannot directly compare all the files at once. It is also
difficult to visualize the relationships between audio and non-
audio attributes using canonical techniques, let alone compare
how multiple combinations of these attributes relate to each
other.

Additionally, many of the canonical audio visualization
techniques are not accessible to novice users. It is difficult
to both read and create these visualizations directly without
at least a minimal understanding of audio analysis and signal
processing, and pitfalls such as choosing the wrong sample
rate or window function can distort results in unexpected ways.
However, both expert and non-expert users may still wish to
explore audio data visually. For example, one might want
to identify relationships between vocalizations and animal
behaviour, explore differences in speech among people with
voice pathologies, investigate similarities between music gen-
res or artists, or study recordings of different instruments for
pedagogical reasons. In all cases, users would benefit from a
system that can handle a large number of sound files, is easy to
use and understand, provides flexibility to show relationships
between audio attributes and non-audio attributes, and allows
both broad and granular exploration of the sound files in their
datasets.

We propose the visualization tool SoundMap to satisfy
these requirements, which allows users to explore many multi-
attribute sound files simultaneously. Taking inspiration from
previous work in faceted browsing [6, 13], SoundMap allows
users to visualize both individual audio and non-audio at-
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tributes as well as combinations of attributes. To facilitate the
needs of both novice users and experts, scatterplots and bar
charts are used to visualize broad relationships among many
sound files, and interactions allow users to “zoom in” to a
single sound if they want to see a more detailed spectrogram.
To illustrate how SoundMap can be used for different types
of sound datasets, we evaluate the tool on two different
example datasets: CatMeows [7], and the Free Music Archive
(FMA) [4].

II. PERSONAL EXPERTISE

Elizabeth has the most background experience working with
audio data—she is currently taking the CPSC 554X Machine
Learning and Signal Processing class, and completed a bache-
lor’s thesis on mathematically modelling the singing voice, for
which she wrote a program implementing an existing model
of voice vibrato that required both analyzing and synthesizing
sound data. She also has a bachelor’s degree in music, and
therefore has strong knowledge of music theory and structure.
She is a master’s student in the Department of Computer Sci-
ence, and has worked in a number of programming languages
in the past, including some minimal work in JavaScript.

Mifta is a master’s student in the Department of Electrical
& Computer Engineering and her research is in the area of
Software Engineering. She has over 4 years of experience
working in the industry as a Full Stack Software Engineer
and has previously worked with React]S and D3 library.

Nichole is a master’s student in Computer Science. She
has software development experience including 1 year of
experience as a Full Stack Software Developer using ReactJS.

III. RELATED WORK
A. Visualizing Sound Files

To visualize a single sound file, common techniques such as
waveforms or waveplots, spectrograms, and chromagrams are
typically used. Sometimes more specialized visualizations are
also adopted, particularly for music data, such as Tonnetz grids
or isochords as shown in [2], which allows users to visualize
more complex tonal relationships within music. Similarity
matrices can also be used to analyze a single sound file, which
can be particularly useful for longer files [3]. To compare a
small number of sound files together, the chosen visualization
is usually layered horizontally or vertically: for example, the
free to use Sonic Lineup [14] application is one such example,



and many other audio programs like Audacity [1] also display
sound file visualizations like waveplots vertically.

In cases where one must visualize a large number of sound
files, similarity measures are usually employed. The resulting
similarity mapping is typically arranged into a network [3, 9],
or displayed in a spatial field [3]—however, any underlying
information about how the similarity between items was cal-
culated is usually hidden from users. For example, the content
based graph visualization described by Muelder, Provan, and
Ma [9], and the Islands of Music system by Pampalk et
al. [11] are two examples of using similarity to visualize a
large number of music files. Though the first uses graph based
visualizations and the second a topographical visualization
technique, both systems cluster similar songs together and
display metadata information such as album art or song genre.
However, it is not clear from either visualization how specific
audio features contribute towards similarity clustering, or even
what audio features are present in the data at all. Therefore,
while similarity approaches can be useful to organize large
datasets, they do not easily facilitate data exploration tasks.

B. Faceted Browsing

Lee et. al.[6] introduces FacetLens, which is an interactive
visualization tool for exploring relationships and trends to
make sense out of faceted data. It uses linear facets which
allows users to identify trends and compare them simultane-
ously. Our audio datasets also contain many faceted metadata
attributes in addition to sound attributes, requiring a tool that
can effectively represent the facets along with the sound at-
tributes in a meaningful way and help identify the relationships
between non-audio and audio attributes. We also plan to add
multiple views to compare trends simultaneously, similar to
FacetLens. However, FacetLens is only suitable for general
datasets which do not provide any audio specific views, like a
spectrogram. It also does not have any summary view to show
the aggregated value of the quantitative attributes grouped by
the categories.

C. Waveform Visualization

Similar to sounds, haptic data can also be visualized as
waveforms. Seifi, Zhang, and MacLean [13] show the vi-
sualization of multiple vibrations. This work targets novice
users, providing an easy to understand interface. Additionally,
they provide the ability to view many marks at a time and
allow filtering by categorical attributes, revealing that faceted
browsing techniques can be effectively applied to sound-like
datasets. One of our goals is to create an abstraction from
waveforms to sound attributes to enable viewing of many
sounds files at once. This is similar to some of the views that
VibViz provides for viewing a collection of vibrations, such as
using coloured dots on a 2D axis.

IV. DATA AND TASK ABSTRACTION

A. Domain

SoundMap 1is a tool to support audio analysis, a domain
which traditionally uses specialized visualization techniques

such as spectrograms, waveplots, or chromagrams to visualize
audio attributes. In audio analysis, sound attributes of interest
may vary depending on context. For example, fundamental
frequency (i.e., the main pitch we recognize in a sound, like
a musical note) is a common attribute of interest for short
audio samples like a single note played on an instrument, a
single spoken word or vowel sound, or a single animal vocal-
ization. However, fundamental frequency is a much less useful
attribute for audio files that contain many overlapping sounds
(there may be multiple fundamental frequencies that are diffi-
cult to distinguish from one another) or are longer than a few
seconds (fundamental frequency may change significantly over
the course of the entire audio file). Music is one such example,
as songs usually contain multiple instruments and/or vocals,
and generally last several minutes. Common attributes relevant
to music analysis include chroma features representing the
strength of the 12 semitone pitch classes throughout a piece
of music, mel-frequency cepstral coefficients (MFCC’s), which
are often used in speech recognition [5] or music information
retrieval (MIR) [15] tasks, as well as other spectral features
such as spectral bandwith, spectral rolloff, and zero-crossing
rate.

Additionally, sound files may contain several metadata
features. These may include contextual information, such as
the situation in which the sound was recorded, technology
used to capture the recording, or information about what or
who was recorded. As an example, an audio file for a song may
have relevant metadata for the song’s artist, album, language,
or genre. As metadata features vary between audio datasets, a
single dataset may have several metadata features with just a
few levels each, a few metadata features with several levels,
or any other such combination.

People interested in exploring an audio file dataset may be
interested in audio attributes, metadata, or both. Additionally,
despite many traditional methods being tailored towards expert
users, novices may also wish to visualize relationships in audio
data. Thus, SoundMap is intended to support both novice
and expert users who wish to explore any audio dataset that
contains both metadata and sound attributes.

B. Data

As discussed in the domain description, audio data may
have a variety of sound and external attributes of interest.
To ensure that SoundMap can effectively visualize different
kinds of audio datasets, we selected two example datasets with
significantly different qualities to evaluate the tool.

1) MeowAnalysis: The first dataset of interest was derived
from the CatMeows dataset compiled by Ludovico et al. [7].
The original dataset consists of 440 short .wav files, each
containing a single cat vocalization. Metadata information,
such as the recording scenario stimulus, cat ID, owner ID, cat
breed, and sex, is encoded in the file name. Guided by previous
work on cat vocalization studies [12, 16], we derived five
relevant audio attributes from the original dataset. The Python
audio processing library Librosa [8] was used to estimate
mean, maximum, and minimum fundamental frequency for



TABLE I

CLASSIFICATION OF ATTRIBUTES IN THE MEOWANALYSIS DATASET.

Attribute Description Type Items/Range
Cat ID Unique ID corresponding to each cat Categorical 21
Owner ID Unique ID corresponding to each cat’s  Categorical 12
owner
Stimulus Situation in which the meow was recorded. ~ Categorical 3
Situations included brushing, isolation in
an unfamiliar environment, and waiting for
food.
Breed Cat breed, either Maine Coon or European  Categorical 2
Shorthair
Sex Specifies whether the cat is male or female, = Categorical 4

and has been spayed or neutered

Mean Fundamental

Mean of the estimated fundamental fre-
quency in Hz (pitch) for the entire meow.

Quantitative

124.589 — 1122.891

Max Fundamental

Max value of the estimated fundamental
frequency in Hz (pitch) for the meow.

Quantitative

456.570 — 2205.000

Min Fundamental

Min value of the estimated fundamental
frequency in Hz (pitch) for the meow.

Quantitative

21.554 — 26.957

Peak Frequency

Estimated value for peak frequency in Hz
(loudest frequency that occurred during the
meow). Note this may occur at an overtone
higher than the fundamental frequency.

Quantitative

450.000 - 6960.000

Duration

Total meow time in seconds, not including
any silences before, after, or during the

Quantitative

0.006 — 1.847

meow.

Total: 440 meows

each vocalization. Analysis of the fast Fourier transform was
also used to estimate peak frequency, and signal strength was
used to differentiate between noise and meows in order to
calculate duration. The resulting audio attributes were com-
bined with metadata attributes into our final dataset, which we
designate as the MeowAnalysis dataset. A detailed description
of this dataset is shown in Table I.

2) SongAnalysis: Our second dataset of interest was de-
rived from the Free Music Archive (FMA) dataset created by
Defferrard et al. [4], which was originally created for MIR
and machine learning tasks. This dataset already consisted of
several pre-processed audio attributes for over 100,000 tracks.
While we intend for SoundMap to support a large number of
sound files, we are also limited by metadata feature levels (for
example, the raw dataset also contains over 16,000 artists).
Therefore, we randomly selected a subset of the original
dataset with an upper limit of 15 artists. This resulted in a
more manageable dataset of 71 total songs, which we call
the SongAnalysis dataset. Additionally, several of the original
audio features were removed, as they contained very little
variance and would therefore not be useful to visualize. We
also retained only the most relevant metadata features, such
as artist, album, and genre. A detailed classification of this
dataset is shown in Table II.

Notably, the MeowAnalysis dataset contains very short au-
dio samples, and the resulting audio attributes are all relatively
simple. However, this dataset contains a much larger total

number of elements. On the other hand, the SoundAnalysis
dataset contains fewer total elements, but the length of the
audio files resulted in numerous audio attributes that are
closely linked, such as the 12 chromagram semitone attributes,
or the seven Tonnetz attributes. Recognizing that meaningful
audio attributes are context dependent, and to keep the scope
of our project manageable, we assume that users of SoundMap
wish to visualize audio data that has been pre-proccessed as a
.csv file consisting of metadata and individual audio attributes,
and treat each audio attribute independently. In order to display
spectrograms, we also require an additional column in each
dataset containing an array representation of the audio file
data. Note that this attribute has not been included in the
data abstraction tables, as spectrogram calculation remains as
a TODO at this stage of the project.

C. Tasks

At a high-level, SoundMap is intended to support the
exploration of multi-attribute sound data. Specifically, users
can explore how metadata attributes and audio attributes are
related, as well as view individual items in detail. We organize
specific user tasks into the abstract task categories analyze,
search, and query, as described in [10].

1) Analyze: These tasks are centered around data consump-
tion and discovery.

¢ Audio feature analysis: The user can visualize all sound
files with respect to a single audio attribute. For example,



TABLE II
CLASSIFICATION OF ATTRIBUTES IN THE SONGANALYSIS DATASET.

Attribute

Description Type

Items/Range

Album

Album the song belongs to. Some songs are
single tracks, in which case the album is
described as N/A.

Categorical

22

Artist

Song artist. Categorical

Genre

Genre of the song. Note that some songs
have not been assigned a genre, in which
case the genre is described as unknown.

Categorical

Mean STFT Chroma

Chromagram values calculated over the
short time Fourier transform for the entire
song. Note that there are 12 separate chro-
magram attributes, one for each semitone
note name (C, C#, D, D#, E, F, F#, G, G#,
A, A#, B). The range for each attribute is
approximately the same.

Quantitative

0.1 -0.6

Mean Tonnetz

Projection of chromagram values onto a
6-dimensional basis, representing harmonic
relationships (perfect fifth, minor third, and
major third). There are therefore 6 sepa-
rate tonnetz attributes, one for each basis
element. The range for each attribute is
approximately the same.

Quantitative

-0.03 - 0.04

Mean Spectral Bandwidth

Difference between the highest and lowest
frequency in the spectrum.

Quantitative

467 - 2700

Mean Spectral Contrast

Contrast in energy between the top quan-
tile (peak energy) to that of the bottom
quantile (valley energy). This is calculated
over 7 frequency bands (from low to high
frequency). Each of the seven attributes has
approximately the same range.

Quantitative

152 - 32.1

Mean Spectral Rolloff

The center frequency for a spectrogram bin
where at least 85% of the energy of the
spectrum is contained in this frequency bin
and the bins below.

Quantitative

534 — 4460

Mean Zero Crossing Rate

The rate at which a signal (e.g., as a wave-
form) crosses the line y = 0.

Quantitative

0.0168 — 0.124

Total: 71 songs

they can see the mean frequency distribution of all files
in their dataset, and can determine the average frequency
for most of the files.

Audio and metadata analysis: The user can visualize all
sound files with respect to a single audio attribute and
a single metadata attribute. For example, they can see
whether breed has any effect on the distribution of mean
frequency in the MeowAnalysis dataset.

Detailed individual analysis: By selecting a single sound
within the larger overview, the user can see more detailed
audio information for the sound file.

2) Search: These tasks are centered around data explo-
ration.

e Browse an area: With a known location in mind with

respect to either metadata or audio data, the user can
investigate sounds within that area, opening detailed
views if desired. For example, a user looks for pop songs
with high spectral bandwidth.

e Outliers: The user looks for unexpected outliers within

their dataset. For example, a user checks for any sound
files that have an abnormally high or low fundamental
frequency.

3) Query: These tasks are centered around comparison and
filtering, particularly between multiple metadata and audio
attributes.

¢ Visualize multiple audio attributes: Users can compare

multiple audio attributes at the same time, and track the
location of a single sound or group of sound files across
all attribute displays. For example, a user can compare a
meow’s frequency and duration together.

Visualize multiple metadata attributes: Users can com-
pare multiple metadata attributes at the same time, with
respect to one or more audio attributes. For example, a
user arranges songs by genre, and additionally highlights
songs that belong to a specific album, all with respect to
duration.

Filter: Users may filter both metadata and audio attributes.
For example, a user displays only one type of cat breed,
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Fig. 1. Landing page of SoundMap containing the Overview, Detailed view and Summary

and displays only sounds that have a frequency between
500 Hz and 600 Hz.

V. PROPOSED SOLUTION

A. Overview

To encode the relationship between categorical and quanti-
tative attributes at a time, we plan to use a scatterplot where
points are used as marks to encode the individual sound files.
The horizontal axis will represent the scalar attribute of interest
and each sound file will be represented by a mark on the
plot. The vertical axis will be used to group data points
by categorical attributes. For example, if there were three
categories in the selected categorical attribute, the marks would
be separated into three distinct positions on the vertical axis.
Each of the axes in the scatterplot will be configurable through
dropdown menus. The scatterplot values in the y-axis can be
filtered out using checkboxes shown in Fig. 1. The x-axis is
configured through an input field by increasing or decreasing
the range of the min and max values. The values can be
further filtered by a second dropdown, which color encodes
the data points based on the categorical attribute chosen. At
most 8 options can be selected such that 8 different colors
can be shown at a time. Each change in the dropdowns and
checkboxes will reload the graph with an animation effect or
a spinner to indicate change.

B. Detailed View

A detailed view of the sound file can be shown within the
scatterplot through a popover. This popover will be triggered
when a single point is clicked which will then show a
spectrogram of the sound as well as other details like the
categorical attributes and value it corresponds to in the graph.
As a stretch goal, we may also include the audio of the sound
file which the user can play within the tool.

C. Summary View

A direct summary of all the filters applied to the scatterplot
overview can be visualized in a grouped bar chart. The x-axis
will have the categorical attribute used in the scatterplot y-
axis, and the y-axis of the bar chart will show the quantitative
attribute of the scatterplot x-axis. The bars will be grouped
by the categorical filter applied on the scatterplot view and
color encoded in the same way. This view can also be hidden
to reduce clutter by using a toggle switch to show/hide the
summary.

D. Multiple Views

Additionally, multiple views can be shown at the same time
by adding views of each of the quantitative attributes in a
grid view. This can be helpful in comparing all the data and
observing the relationships between multiple audio and non-
audio attributes at a glance.



VI. IMPLEMENTATION APPROACH

We plan to develop the visualization system as a web
application using the React framework and d3 visualization
library. We also plan to use Material-UI for adding the UI
elements like dropdowns, input boxes, checkboxes, buttons
etc. Building it as a web application adds the ability to upload
multiple datasets, thereby making the tool more dynamic.

VII. USAGE SCENARIO

Imagine you are a research veterinarian with an audio
dataset of cats having certain attributes (breed, gender etc.)
in various stimuli, and you want to visualize the relationship
between each of the attributes to identify patterns. To view
the effect of various attributes on the meowing of cats [7], the
user of the tool is taken to the landing page of SoundMap. The
user can upload the dataset as a csv file and will be shown
a modal window to group the categorical and quantitative
attributes retrieved from the file. After choosing the grouping,
the view will load an overview of the first quantitative and
categorical attribute in the x and y axis respectively. The x
and y axis will have a dropdown beside them to give the user
the ability to change the attribute when needed. The graph
will be a scatterplot of individual sound files encoded with a
single color. The y-axis dropdown will show the options of
the selected categorical attribute and all of the options will
be checked by default. The user can choose to deselect some
options to show only the selection categories in the y-axis. The
x-axis will have scalar values of quantitative attribute shown by
a range from the minimum to maximum value found for that
attribute in the csv. The user can also tune the minimum and
maximum value of the x-axis to narrow down the sound files
further. For example, the user may choose to only observe the
sound files having a meow duration of 0.75 to 1.25 seconds.

There will be a filter dropdown on the left of the scatterplot
for the user to choose another categorical attribute they wish
to filter the view with. This attribute will also have the options
selected by default and each of the options will be encoded
by individual colors in the scatterplot. The user may choose
to analyze individual sound files by clicking on the dots in the
scatterplot to analyze the spectrogram. This information can
help in understanding the frequencies of a signal as it varies
with time. Additionally, the user can add multiple overviews of
each quantitative attribute for comparison by clicking the "Add
View" button and choosing another quantitative attribute. By
selecting one or more points in the original view, the same
points in the new quantitative view will be highlighted as
well. For example, the researcher may open both the mean
frequency and duration view, select a group of meows with
high mean frequency, and see that the durations of these high-
frequency meows range from 0.5 to 0.75 seconds.

By toggling the switch to show or hide the summary, the
user can also see a grouped bar chart of the attributes and
filters chosen in the scatterplot. This will show the average
of the quantitative attribute in the corresponding scatterplot
grouped by the two categorical attributes.

TABLE III

ESTIMATED WORK TIMELINE
Milestone Deadline | Est. Hours Owner
Proposal Oct. 21 13 | All
Learn D3 Oct. 22 10 | All
Create Dashboard Scaffolding Oct. 24 2 | Mifta
Preprocess Dataset Oct. 29 15 Elizabeth, Nichole
Add Attribute Selection Modal | Oct. 31 7 | Nichole
Implement Overview Nov. 5 18 | Mifta
Add Filters Nov. 6 2 | Mifta
Implement Detailed View Nov. 8 15 | Elizabeth
Implement Multi View Nov. 9 2 | Elizabeth
Implement Summary View Nov. 13 10 | Nichole
Update Nov. 16 5 | All
Peer Reviews Nov. 17 5 | Al
Post-update Meeting Nov. 24 1| All
Address Feedbacks Dec. 5 10 | TBD
Final Presentation Dec. 15 10 | All
Final Paper Dec. 17 20 | All

VIII. MILESTONES

We are aiming to spend around 145 hours on this project.
Table IIT shows an estimated timeline for the milestones of
the project.
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