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Introduction

The advent of genome sequencing in the biomedical sciences has provided researchers with

massive, high-dimensional datasets that can be used for a variety of purposes such as understanding

genetic variation in the human population and elucidating the genomic cause of diseases (The DNA

Universe, 2020). Genomic data can be considered as having a multiscale structure. This large,

multiscale structure can make it difficult to interpret and understand genomic information.

Visualization tools can be used to better understand the overall structure of genomic

information, as well as to gain insights into potential relationships within genomic data. A major area

of interest in genomics is finding genetic variants within the genome. Genetic variants are considered

to be any change in the sequence of nucleotides that make up a given DNA sequence in comparison

to a reference sequence. Genetic variants can range in size, from single nucleotide variants (SNVs), to

structural variants (SVs) which are any variants larger than 50 base pairs (bp) (Tattini et al., 2015).

Structural variants can take on a variety of forms including deletions, insertions, duplications,

inversions and translocations. These structural variants can result in a range of functional

consequences, and often contribute to the occurrence of diseases. Structural variants that cause

disease are considered to be “pathogenic”. Pathogenicity of a variant can fall on a spectrum from

being highly pathogenic or likely pathogenic to neutral or benign (Biesecker et al., 2018).

Biological data are often stored and shared in large, publicly available databases. Data from

these databases can be downloaded as a text file and used for bioinformatic analysis (Landrum et al.,

2014). The National Consortium of Biological Information (NCBI) provides clinically relevant structural

variants and their corresponding pathogenicity annotations in its ClinVar database.  In this work, we

aim to use a curated set of ClinVar structural variants that have been annotated with pathogenicity

classifications to develop a tool that visualizes a user’s structural variants in relation to ClinVar’s

reviewed SVs. Data from ClinVar will be used to develop filtering mechanisms to allow for the

visualization of variants of differing levels of pathogenicity. To demonstrate the utility of our

visualization tool, we will use the Human HG002 dataset, which is a set of variants pertaining to a

single individual (Zook et al., 2020). The SVs from HG002 will be queried against the set of ClinVar SVs

to identify the pathogenicity of the SVs from HG002. These results will be displayed on a global view

of the genome, as well as on individual chromosomes, providing different levels of detail in the

multiscale data. Furthermore, we will provide details about associated disease information for

individual SVs, based on the ClinVar annotations.



Related Work

There are a variety of tools that have recently been introduced for the visualization of SVs.

This section will discuss the implementation and utility of these approaches, as well as their benefits

and limitations.

Linear Genome Browser

Linear genome browsers were one of the first classes of tools used to visualize the human

genome. The UCSC Genome Browser was initially developed during the Human Genome Project and

allowed for the visualization of the DNA sequences of all 23 chromosomes. Linear genome browsers

typically display the nucleotide sequence of interest below a reference sequence. The nucleotides

that comprise the DNA sequence of interest and the reference genome are displayed in a horizontal

view. Furthermore, custom views of the genome or “tracks” can be added to linear genome browsers

in order to visualize different aspects of the genome such as genomic variants (Karolchik et al., 2009).

The Integrative Genomics Viewer (IGV) tool can be considered as a type of linear genome

browser, which allows for the visualization of diverse genomic data types. The viewer consists of a

series of rectangular panels. The top panel shows the region being investigated on a chromosome in

a horizontal view. Data being visualized through IGV can also include annotations in regards to

phenotype, experimental label or clinical label. These annotations can be visualized in the two

leftmost columns, with the annotated categories listed vertically (Robinson et al., 2011).

While linear genome browsers have a wide range of utility in the visualization of genomic

data, one caveat arises when considering the fact that they are based on visualizing short-read

sequencing data. Short reads are not ideal for identifying structural variants, so linear genome

browsers have not been optimized to visualize structural variant data (Yokoyama & Kasahara, 2020).

Ribbon

The Ribbon visualization tool provides a similar view to linear genome browser visualization

tools but is designed to be compatible with long read sequencing data. Horizontally at the top of the

visualization is a representation of the reference genome segmented into chromosomes. Users can

select a chromosomal section to see the relevant sequence alignments of interest lined up vertically,

as well as structural variants such as translocations (Nattestad et al., 2021). This visualization can be

considered as an improvement over the IGV visualization tool due to its support of visualizing

long-read sequencing data.

MoMI-G: A Graph Based Genome Browser

MoMI-G is a web based genome graph browser that contains multiple panels that can be

used to visualize different aspects of genomic structural variants. The panels contain three main

views. The first view is a circos plot which provides a chromosomal level overview of the structural

variants. Within the circos plot, the structural variants are represented by curved line segments on

different regions within the chromosomes. The second view is a table, which contains metadata on



each annotated structural variant such as the type of structural variant (insertion, deletion,

translocation, duplication, inversion), the chromosome the variant occurs on and the start and end

position of the SV. Finally, the browser also contains a linear genome browser view which visualizes

structural variant positions in relation to a reference genome (Yokoyama et al., 2019).

Task Abstraction

Clinical researchers can obtain several thousand or even millions of structural variant calls for

a single sample. Identifying the medically relevant SVs within a set is crucial for determining the

cause of disease and gaining a better understanding of the role of these genomic aberrations in

human health. The biological relevance of a variant is often inferred by manually querying a database

of known variants (e.g. ClinVar) for matches. The presence or absence of a variant in a database can

be used as a metric for prioritizing variants for further analysis. The extra data available in the

database is also used to annotate these variants.

At the analysis level, a clinical bioinformatician both consumes and produces new

information from a large SV dataset. By analyzing SVs, the researcher can generate a new hypothesis,

or verify or disconfirm an existing hypothesis about the variant’s role in disease. The process of

annotating variants with clinical and phenotypic data produces new information. Once a

bioinformatician obtains a set of structural variants, they may either want to select a set of clinically

relevant SVs from the dataset or compare several potentially relevant SVs to one another. They may

also be interested in summarizing the entire dataset to get a global view of the genome or a region of

it, for example “how many insertions are present on chromosome 21?” or “how many pathogenic

variants are present in my dataset?” At the search level, a bioinformatician must browse through a

set of SV calls to identify variants of interest. The locations of these SVs are unknown and the exact

identity is unknown as well. The user will likely be browsing for SVs with specific clinical attributes,

such as SVs labelled as “pathogenic” or “likely pathogenic”. There may be cases where a user is

simply exploring their dataset, as well, to see if any of their SVs are present in ClinVar, and what

diseases are associated with it.

Data and Data Abstraction

Structural variants are identified in relation to a reference genome. Variants are defined by

their start position along a certain chromosome in the reference, making them ordered and

continuous. The human reference genome contains 25 distinct chromosomes, so the chromosome is

a categorical “bin” within the reference. A variant is a single item within a tabular SV dataset. Our

main input dataset will be a set of structural variants identified for the human individual HG002

(Zook et al., 2020) that have a match in the ClinVar dataset. The ClinVar dataset consists of 150,782

variants in total. The original HG002 dataset contained 46,024 variants, and 2,664 of these SVs have a

match in ClinVar. These 2,664 variants will be presented in our proposed visualization, along with a

summary of the 150,782 variants in ClinVar (Figure 1). A summary of the attributes in our dataset is

presented in Table 1.



Table 1. Attributes in variant dataset.

Variable name Description Type Possible values

Allele ID Identifier/key for the
ClinVar variant that
the HG002 variant was
matched to

Categorical 2,664 values: unique
for each ClinVar
variant

Chromosome Chromosome that the
variant is located on

Categorical 25 possible values: 22
autosomes + 2 sex
chromosomes +
mitochondria

Pos Start position of
HG002 SV along
chromosome

Continuous 1 - length of
chromosome

Type Type of SV Categorical 9 possible values:
complex, deletion,
duplication,
duplication, insertion,
inversion,
microsatellite, tandem
duplication,
translocation, type,
variation, copy
number gain, copy
number loss, fusion

ClinicalSignificance Pathogenicity or
clinical relevance for a
variant

Ordered 4 possible values:
Uncertain significance,
benign, likely
pathogenic,
pathogenic

PhenotypeList Phenotypes (diseases)
associated with a
variant

Categorical 11,583 possible
values: Up to 5
phenotypes are given
listed for a single
variant; if more than 5
are associated, the
number of
phenotypes is given
instead

Similarity The similarity of the
HG002 variant to the
corresponding ClinVar
variant. Given as a
percentage.

Continuous 0-100



Solution

The goal of this project is to create a visualization tool that shows structural variants in the

HG002 SV dataset that match variants in the ClinVar database, along with relevant clinical and

metadata about the matches. A sketch of our proposed visualization is presented in Figure 1. For our

initial implementation, we will use a custom dataset obtained by manually querying the HG002 SVs in

the ClinVar dataset. We hope to make this tool generalizable so that a user can query their own data

in the ClinVar dataset and view the final results, however, implementation of this feature will be

time-dependent.

SVs in the HG002 dataset and ClinVar cannot be matched simply by looking for identical start

positions along a chromosome because these positions may vary slightly. For example, there may be

a 200 bp deletion starting at position 120 of chromosome 1 in the HG002 dataset, while it may be

located at position 123 of chromosome 1 in the ClinVar dataset. While the start position is slightly

different, since the two variants are close in proximity and size, they should be considered the same.

To compare a query variant from HG002 to a target (in ClinVar), the query will be scored based on its

similarity, proximity and length. This score will be used in our solution to filter variants, and is also a

valuable derived attribute that will be encoded.

Our proposed solution is to implement a  multi-view visualization representing different

levels of detail within the HG200 dataset. We will provide a global view of the reference genome with

a Circos plot (Krzywinski et al., 2009). Since the HG200 dataset is quite large, variants will be sorted

and filtered based on their similarity score and/or pathogenicity, so that only the top 1,000 most

similar, pathogenic variants are shown. This will provide an overview of relevant SVs of clinical

significance in the dataset. The hue channel will be used to represent the pathogenicity of the

variant, using a diverging colour scale, and the saturation channel will be used to represent the

similarity score of the variant. Intrachromosomal variants will be encoded by a line mark in the radial

track of the Circos plot, and interchromosomal variants (e.g. a translocation between chromosome 2

and 4) will be encoded by a line linking the two positions.

In addition to the Circos overview, the solution will provide a linked linear view of a region

within the genome to allow the user to navigate through the genome, directly below the Circos plot.

This region will be selected by a brushing action, where a user clicks and drags a region within the

Circos plot. The brushed region within the Circos plot will also be highlighted to verify what region is

being shown in the linear view. All variants present in the brushed region will be shown in the linear

view, and the “brushable” region size will have an upper limit of 1 million base pairs to prevent the

number of items being shown from growing too large. Intrachromosomal variants will also be

encoded with a line mark in this linear view, while interchromosomal variants will be represented

with arrows denoting the direction of the variant (i.e. translocation from the region will be encoded

as an arrow pointing away or upwards, while a translocation to the region will be encoded as an

arrow pointing towards or downwards).

Users will be able to identify details of a single variant by hovering over the variant in either

the Circos or linear view, which will cause a pop-up to be shown with details of its ClinVar ID, specific

location, the phenotypes/diseases that it is associated with, and its similarity score to its associated



ClinVar variant. Variants in the linked Circos and linear views can also be selected by clicking on the

individual mark. The selected variants will be listed in a table on the bottom right of the visualization.

Stacked bar charts will be used to present summaries statistics of the ClinVar dataset and

initial HG002 dataset (before matching variants). This will include visualizing the number of variants

that fall into each pathogenicity category for a given chromosome for both the ClinVar and HG200

datasets. This will allow users to quickly examine and identify differences between the two datasets.

To keep consistent with the Circos plot visualization, the hue channel will be used to represent

pathogenicity and will be implemented using the same colour scheme.

Figure 1. Sketch of the proposed visualization panel. The Circos plot and linear view are linked

through brushing, shown by the purple region. When the user hovers over a variant in the Circos plot

(or linear view), a popup will appear with more details. Two stacked bar charts on the right show the

total number of variants in the whole ClinVar dataset per chromosome (top) and the number of

ClinVar matches in the input data per chromosome (bottom). Variants selected by clicking on the

Circos plot or linear view are presented in a table on the bottom right.

Implementation

We will clean the ClinVar and HG002 datasets with Python scripts and command line tools. A

Python script will also be used to match and score the variants to the ClinVar variants. We will

implement our proposed solution as a web application using the React library. The Circos and linear

genome views will be created with the Gosling.js grammar and visualization package (L’Yi et al.,

2021). The summary bar charts will be implemented with D3.js (Bostock, Ogievetsky, and Heer 2011).

All interactions and other visualization elements will be handled with React.



Milestones

Our project deadlines and major milestones are outlined in Table 3. Before starting our

visualization, we need to clean the large input datasets and identify which HG002 SV match variants

in ClinVar. The data cleaning and initial analysis does not require our entire team, but Armita’s

expertise will be helpful here, since she works with structural variants in her research. All group

members will be involved in all other milestones.

Janet will set up the React app, set up the main structure of the view and set up the Gosling

specifications. She will also work on the stacked bar charts. Neera and Janet will be responsible for

implementing the Circos plot, and Armita will be responsible for the linked linear view. We plan to

have our data finalized and begin implementing the UI before the peer project review and

post-update meeting. We will meet after the post-update meeting and discuss the feedback received,

taking into account any suggestions and making changes to our proposed solution as necessary. In

the final weeks of the term, we will finalize the visualization, with Janet implementing the interactive

components of the visualization once the main plots are complete. If we have time after the

proposed solution is complete, we will set up a backend to allow users to upload their own variants

and perform matching with the ClinVar database.

Table 3. Project deadlines and milestones

Task Deadline Estimated
Time (hours
per person)

Description & Assignments Status

Project Pitch Sep 29 2 - Complete

Pre-proposal Meeting Oct 13 - All Complete

Proposal Oct  21 4 All Complete

Obtain data, initial
analysis for proposal

Oct 21 2 Janet Complete

Data cleaning Oct 27 2 Neera Complete

Match HG002 variants
to ClinVar dataset and
finalize inputs

Nov 3 4 Armita Complete

UI implementation
(initial;
pre-”post-update”
meeting)

Nov 5 2 React app setup: Janet Complete

Nov 16 10 Bar charts: Janet In progress

Nov 16 12 Circos plot: Neera & Janet In progress

Nov 16 12 Linked linear view: Armita In progress

Written Update Nov 16 6 All Complete

Peer Project Review Nov 17 2 All To be



completed

Post-Update Meeting Nov 24 - All To be
completed

Make any necessary
changes to plans

Nov 26 2 All To be
completed

Finish implementing
visualization

Dec 13 10 Interactive features: Janet To be
completed

Dec 13 30 Other features: same
assignments as in “UI
implementation” milestone

To be
completed

Final Presentation Dec 15 6 All To be
completed

Final Report Dec 17 8 All To be
completed

Progress

So far, Janet has identified and downloaded the required datasets. Neera performed the

preliminary data cleaning and Armita wrote and ran the script to match the HG002 and ClinVar

variants. Janet set up the main structure of the React app and Gosling plot components, and has

begun implementing the stacked bar chart component. The current Circos plot and linear view are

placeholders with test code, but the general structure of the app is complete.
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