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Introduction

The advent of genome sequencing in the biomedical sciences has provided researchers with

massive, high-dimensional datasets that can be used for a variety of purposes such as understanding

genetic variation in the human population and elucidating the genomic cause of diseases (The DNA

Universe, 2020). Genomic data can be considered as having a multiscale structure. This large,

multiscale structure can make it difficult to interpret and understand genomic information.

Visualization tools can be used to better understand the overall structure of genomic

information, as well as to gain insights into potential relationships within genomic data. A major area

of interest in genomics is finding genetic variants within the genome. Genetic variants are considered

to be any change in the sequence of nucleotides that make up a given DNA sequence in comparison

to a reference sequence. Genetic variants can range in size, from single nucleotide variants (SNVs), to

structural variants (SVs) which are any variants larger than 50 base pairs (bp) (Tattini et al., 2015).

Structural variants can take on a variety of forms including deletions, insertions, duplications,

inversions and translocations. These structural variants can result in a range of functional

consequences, and often contribute to the occurrence of diseases. Structural variants that cause

disease are considered to be “pathogenic”. Pathogenicity of a variant can fall on a spectrum from

being highly pathogenic or likely pathogenic to neutral or benign (Biesecker et al., 2018).

Biological data are often stored and shared in large, publicly available databases. Data from

these databases can be downloaded as a text file and used for bioinformatic analysis (Landrum et al.,

2014). The National Consortium of Biological Information (NCBI) provides clinically relevant structural

variants and their corresponding pathogenicity annotations in its ClinVar database. In this work, we

aim to use a curated set of ClinVar structural variants that have been annotated with pathogenicity

classifications to develop a tool that visualizes a user’s structural variants in relation to ClinVar’s

reviewed SVs. Data from ClinVar will be used to develop filtering mechanisms to allow for the

visualization of variants of differing levels of pathogenicity. We will show a global view of the

genome, as well as individual chromosomes, providing different levels of detail in the multiscale

data. Furthermore, we will provide details about associated disease information for individual SVs.

Related Work

There are a variety of tools that have recently been introduced for the visualization of SVs.

This section will discuss the implementation and utility of these approaches, as well as their benefits

and limitations.



Linear Genome Browser

Linear genome browsers were one of the first classes of tools used to visualize the human

genome. The UCSC Genome Browser was initially developed during the Human Genome Project and

allowed for the visualization of the DNA sequences of all 23 chromosomes. Linear genome browsers

typically display the nucleotide sequence of interest below a reference sequence. The nucleotides

that comprise the DNA sequence of interest and the reference genome are displayed in a horizontal

view. Furthermore, custom views of the genome or “tracks” can be added to linear genome browsers

in order to visualize different aspects of the genome such as genomic variants (Karolchik et al., 2009).

The Integrative Genomics Viewer (IGV) tool can be considered as a type of linear genome

browser, which allows for the visualization of diverse genomic data types. The viewer consists of a

series of rectangular panels. The top panel shows the region being investigated on a chromosome in

a horizontal view. Data being visualized through IGV can also include annotations in regards to

phenotype, experimental label or clinical label. These annotations can be visualized in the two

leftmost columns, with the annotated categories listed vertically (Robinson et al., 2011).

While linear genome browsers have a wide range of utility in the visualization of genomic

data, one caveat arises when considering the fact that they are based on visualizing short-read

sequencing data. Short reads are not ideal for identifying structural variants, so linear genome

browsers have not been optimized to visualize structural variant data (Yokoyama & Kasahara, 2020).

Ribbon

The Ribbon visualization tool provides a similar view to linear genome browser visualization

tools but is designed to be compatible with long read sequencing data. Horizontally at the top of the

visualization is a representation of the reference genome segmented into chromosomes. Users can

select a chromosomal section to see the relevant sequence alignments of interest lined up vertically,

as well as structural variants such as translocations (Nattestad et al., 2021). This visualization can be

considered as an improvement over the IGV visualization tool due to its support of visualizing

long-read sequencing data.

MoMI-G: A Graph Based Genome Browser

MoMI-G is a web based genome graph browser that contains multiple panels that can be

used to visualize different aspects of genomic structural variants. The panels contain three main

views. The first view is a circos plot which provides a chromosomal level overview of the structural

variants. Within the circos plot, the structural variants are represented by curved line segments on

different regions within the chromosomes. The second view is a table, which contains metadata on

each annotated structural variant such as the type of structural variant (insertion, deletion,

translocation, duplication, inversion), the chromosome the variant occurs on and the start and end

position of the SV. Finally, the browser also contains a linear genome browser view which visualizes

structural variant positions in relation to a reference genome (Yokoyama et al., 2019).



Task Abstraction

Clinical researchers often obtain several thousand or even millions of structural variant calls

for a single sample. Identifying the medically relevant SVs within a set is crucial for determining the

cause of disease and gaining a better understanding of the role of these genomic aberrations in

human health. Our visualization tool will allow a bioinformatician to prioritize variants by querying

their dataset against validated, clinically relevant SVs in the ClinVar database. Variants that are

present in ClinVar will be highlighted and annotated with metadata related to disease association,

molecular function and pathogenicity.

At the analysis level, a clinical bioinformatician both consumes and produces new

information from a large SV dataset. By analyzing SVs, the researcher can generate a new hypothesis

or verify or disconfirm an existing hypothesis about the variant’s role in disease. Genomic variants

will be annotated with clinical metadata as a means of prioritizing them during analysis. This

annotation step is a “produce” goal as it generates new data from the input. Finally, the researcher

may also be interested in recording the SVs identified in this analysis for further work.

At the search level, a bioinformatician must browse through a set of SV calls to identify

variants of interest. The locations of these SVs are unknown and the exact identity is unknown as

well. The user will likely be browsing for SVs with specific clinical attributes, such as SVs labelled as

“pathogenic” or “likely pathogenic”. There may be cases where a user is simply exploring their

dataset, as well, to see if any of their SVs are present in ClinVar, and with what attributes.

Once a bioinformatician identifies a set of targets, they may either want to identify a set of

clinically relevant SVs or compare several potentially relevant SVs to one another. They may also be

interested in summarizing the entire dataset to get a global view of the patient’s genome, for

example “how many insertions are present on chromosome 21?”

Data and Data Abstraction

Structural variants are always identified as an alternate allele in relation to a reference

genome (reference allele). The variants are defined by their positions along the reference, making

the data inherently spatial. A single variant can be considered as an item within a tabular dataset or

as a grid of positions along the reference. Our input dataset will be a set of sequence-resolved

benchmark SV calls for the human individual HG002 (Zook et al., 2020). These SVs were called against

the human reference genome build GRCh37 (Church et al., 2011). There are 46,024 structural

variants (>= 50bp) in total, and 54 attributes associated with each SV. We will not need most of the

attributes and will drop these from the dataset. The main attributes of interest are described in Table

1.

Table 1. Main attributes of interest in HG002 benchmark structural variant dataset.

Variable Description Type Possible values



CHROM Chromosome along
which the SV occurs

Categorical 25 (22 autosomes, 2
sex chromosomes,
mitochondria)

POS Starting position of SV
along chromosome

Spatial 1 - length of
chromosome

END End position of SV
along chromosome

Spatial 1 - length of
chromosome

SVTYPE Type of SV Categorical Deletion, contraction,
insertion, duplication,
inversion

SVLEN Difference of length
between reference
and alternate allele

Continuous 50bp - infinite (we will
likely impose a cutoff)

The curated ClinVar database is a tabular dataset consisting of 175,870 SVs annotated against

GRCh37. The dataset consists of 37 attributes that describe an SV’s location and type, its phenotypes,

academic review status, etc. The majority of these attributes are descriptive, while Chromosome,

PositionVCF and Type will be used to match the SV to the input data. Missing, irrelevant and

incomplete items/attributes will be removed from the dataset. The attributes that will be used in our

tool are described in Table 2.

Table 2. Main attributes of interest in ClinVar dataset.

Variable Description Type Possible values

Chromosome Chromosomal location Categorical 25 (22 autosomes, 2
sex chromosomes,
mitochondria)

PositionVCF Starting position of SV
along chromosome

Spatial 1 - length of
chromosome

Type Type of SV Categorical 11 (copy number gain,
copy number loss,
deletion, duplication,
fusion, insertion,
inversion,
microsatellite, tandem
duplication,
translocation,
variation)

Name ClinVar preferred
named for the record

Categorical Unique for each item

GeneID Associated GeneID
from NCBI’s Gene

Categorical 8,094 unique genes
reported



database. Reported if
there is a single gene,
otherwise reported as
-1

ClinicalSignificance Character,
comma-separated list
of calculated clinical
significance

Categorical/ordinal
(ordered by
pathogenicity)

5 (benign, likely
benign, pathogenic,
likely pathogenic,
uncertain significance)

PhenotypeList Character, list of
associated phenotype
names

Categorical 7,190 unique
associated
phenotypes

Solution

The goal of this project is to create a visualization tool that shows which structural variants in an

input dataset are present in the ClinVar database. For our initial implementation, we will match the

HG002 SVs with the ClinVar SVs and directly visualize this dataset. We hope to make this tool

generalizable, so a user can upload their own data and view the final results. A sketch of the final

product is presented in Figure 1.

Figure 1. Sketch of the final visualization panel

Proposed User Scenario

A user has the structural variants from an individual. They wish to visualize these variants in

comparison to the human reference genome as well as obtain more information about the

significance of the variants. The user uploads a VCF (samtools n.d.) file containing the structural

variants. The file must contain the required fields in VCF format. Our tool will perform a search in the



ClinVar database, looking for structural variants that match those uploaded by the user. A matching

structural variant is scored by proximity of the location in ClinVar to the location in the uploaded file

and the similarity of the contents of the two variants. Best matches are retrieved and used to further

annotate the structural variants with additional information such as clinical significance and

molecular consequence. This data is then shown on a sample individual’s genome in comparison to

the reference genome for better illustration. The user can inspect each variant individually by moving

to that location. Statistics can also be presented in subplots.

Implementation

We first need to clean the data obtained from ClinVar and perform initial analyses. Next, to

implement our proposed visualization, we need two main components: 1. the scripts for

communication with the ClinVar database, data augmentation and filtering, and 2. the dashboard for

user interaction and showing the final results. We intend to use the Python programming language

for the scripts. Accessing the ClinVar database will be done using clinVar’s application programming

interface. After the data is gathered and processed, we use the D3.js (Bostock, Ogievetsky, and Heer

2011) framework to create the visualization.

Potential Issues and Solutions

● The user must specify which reference genome was used to retrieve the locations of the

structural variants in the VCF file. The platform can provide multiple reference genomes or

use liftOver(“Genome Browser User’s Guide” n.d.) files to map the locations to a specific

genome reference genome build based on data available in the ClinVar database.

● ClinVar might not contain information for some of the novel structural variants uploaded by

the user. For these cases, the user can add their own annotations to the VCF file and those

will be shown instead of the ClinVar data.

● ClinVar has an extensive database. Querying this database can be computationally expensive

as we also have to check the content similarity between the query and hits in the database.

Hence, the searching phase might cause scalability problems. We have to make proper use of

searching strategies and efficient use of databases to reduce the search overhead as much as

possible.

Milestones

Our project deadlines and major milestones are outlined in Table 3. Before starting our

visualization, we need to identify which HG002 SV match variants in ClinVar. The dataset will be

cleaned to remove unnecessary attributes and items. The data cleaning and initial analysis does not

require our entire team, but Armita’s expertise will be helpful here, along with one other member. All

group members will be involved in all other milestones.

Table 3. Project deadlines and milestones

Task Deadline Estimated Time
(hours per
person)

Description/Assignments



Project Pitch Sep 29 2 -

Pre-proposal Meeting Oct 13 - All

Proposal Oct  21 4 All

Data cleaning and initial
analysis

Oct 27 1-2 Armita, one other person

Match HG002 variants to
ClinVar dataset and
finalize inputs

Nov 3 3 All

Start implementing UI Nov 5 10 All

Written Update Nov 16 4-5 All

Peer Project Review Nov 17 2 All

Post-Update Meeting Nov 24 - All

Make any necessary
changes to plans

Nov 26 1-2 All

Finish code Dec 13 ? All

Final Presentation Dec 15 4 All

Final Report Dec 17 6 All
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