
B-Matrix Explainer

Matias I.B. Oddo - 2022.10.19

Figure 1. High-level step-by-step process of the B-Matrix algorithm for an example graph with 7 nodes and 14 edges. The final B-Matrix is
shown at H, where rows are the number of nodes reached at a given hop and columns are the number of hops away from a starting node,
and values within cells are node counts. Both axes of the B-Matrix use index zero. The algorithm starts by picking one of the graph’s nodes,
shown in A with the selected node highlighted in red. To create the bit matrix through Breadth-Search First for A, start at A0 at the zeroth hop,
where we only have one node at hand (the already selected starting node) so we bit-flip the cell at the zeroth row and first column. Then at
first hop A1 we move to the first row, and bit-flip at the column index of the number of nodes encountered, in this case two. Then at second
hop A2 we encounter three nodes, so we bit-flip the cell at the second row and third column. Finally at A3 the third hop traverses the entire
graph with only one node left, so we bit-flip the third row and first column. This process is repeated for every node in the graph, each node is
a starting node once and gets a bit-matrix, as shown in B, C, D, E, F, and G. When all nodes have a bit-matrix, all matrices add together
element-wise into an array of integers H (the B-Matrix) and the algorithm ends.

Abstract — This UBC CPSC 547 Information Visualization project about the B-Matrix, a graph invariant data abstraction about
the structural properties of a network. Canonically visualized through a colormap heatmap idiom, this paper proposes alternative
visualizations including a bar chart histogram idiom and row-normalization to enhance information fidelity and discovery. This
paper has a companion GitHub repository github.com/dirediredock/BMatrix_Explainer that features a comprehensive
README.md visual explainer, network dataset examples, figures, and Python code for the generation of a B-Matrix and high
resolution visualizations as described in this paper.

Index Terms — network analysis, network visualization, network portrait.

1 INTRODUCTION

This CPSC 547 project is about visualizing networks, and while it all
worked out at the end, it had a rocky start. In the beginning I was
interested in visualizing information from Wikipedia, so I made a
Depth-First Search (DFS) recursive scraper for Wikimedia API to
extract knowledge networks hidden in semantically rich fields within
infoboxes. An infobox is a specially structured format with shared
front-end and back-end content, making infoboxes both human and
machine readable. My original project goal was to interlink infobox
networks to fill information gaps, and then create a
human-in-the-loop tool for Wikipedia editors. I started with a DFS
recursive scraper, and then I added more bells and whistles such as
an API solver for synonymous page redirects and an HTML regex
system to isolate outgoing semantic fields such as Influenced from

incoming ones such as Influences and Influenced by. Longstroy short,
I ended up automating myself out of a job, and learned that software
that gap-fills Wikipedia is not fit to be a CPSC 547 project. Infobox
interlinker does work though, project progress and code can be found
at github.com/dirediredock/infobox_interlinker. Two
knowledge networks came from the infobox project, one scraped
from   wiki/Fortran for a graph about programming languages (471
nodes, 1169 edges), and a much larger one from   wiki/Carl_Jung
about influential thinkers (6907 nodes, 16592 edges). With these
networks at hand, I wondered what other ways are there to
understand and better work with information dense networks. A
paper on the topic of information-based network comparison has a
“real world” network that looks similar to my Wikipedia networks,



but it also has a companion matrix visualization that I have never
seen before, called a B-Matrix (Figure 1 within both [1] and [2]).

Also known as a network portrait, a B-Matrix is a graph invariant
data abstraction about the structural properties of a graph [1]. It has
practical application in network analysis, where portrait divergence is
a metric of similarity between two networks based on B-Matrix
intercomparison [2]. While in literature both B-Matrix and network
portrait are used interchangeably to refer to both the matrix itself and
its visual representation, this paper disambiguates B-Matrix to
strictly mean the data abstraction, and network portrait to mean the
visual representation. This distinction facilitates discussion of
alternative visualizations of a B-Matrix.

The horizontal axis of a B-Matrix is for the number of nodes reached
by the algorithm at a given step. The vertical axis is the number of
hops away from a starting node that the algorithm runs through. Both
the x-axis and y-axis of the B-Matrix have index-zero and start
counting from the zeroth column and zeroth row in +1 integer steps.
Each cell of the B-Matrix begins as 0 and is modified by the
algorithm through bit-flip from 0 to 1. The last step of the algorithm
involves adding all of the bit-flipped cells element-wise, so the
B-Matrix always contains integers. Figure 1 illustrates the B-Matrix
algorithm using a small graph as an explainer. Breadth-First Search
(BFS) is the core algorithm for node accounting in B-Matrix
creation, a sibling solution to the DFS approach deployed in infobox
interlinker.

The B-Matrix of a graph has interesting properties. First, all rows
add up to the total number of nodes in the graph. Second, the zeroth
row is always empty except for the first column cell, which has a
value equal to the total number of nodes in the graph. Third, the first
row records the number of times different node counts happened at
exactly one hop away from the starting node. The node degree is how
many edges a node has, so the first row is effectively a record of the
frequency of all node degrees in the graph. Fourth, the last row is the
maximum number of hops the algorithm got through before running
out of nodes. In other words, the final hop number, or the height of
the matrix, is equivalent to the diameter of the graph. The graph
diameter is the length of the shortest path between the two most
distanced nodes. Fifth, B-Matrix construction and cell order is graph
invariant, so axes labeling and interpretation is always the same.
Finally, because each cell has node counts, the matrix is always made
out of integers. So far in literature the B-Matrix is visualized through
mapping a colormap to the range of integers in the matrix, resulting
in a heatmap idiom.

This paper has two contributions. First, an alternative view through
bar chart econding resulting in a histogram idiom with high-fidelity
monochromatic rendering, useful for visualization of B-Matrix under
challenging color displays. Second, row-normalization to reveal
patterns and enhance information discovery within the hop level, a
per-row transformation that is applicable to both heatmap and
histogram B-Matrix views.

2 RELATED WORK

B-Matrix has been used as a comparative metric in scientific research
and as part of visualizations systems in-itself since B-Matrix
introduction in 2008 [1], including exploratory research such as
visualizing the community structure of Brazilian musicians [10] and
portrait divergence in characters, locations, and keywords said across
networks built from Star Wars movie scripts [12].

Citing a preprint of [1] from 2007, [15] is the earliest practical
implementation of the B-Matrix algorithm, used in urban planning
research as comparative metric for network-converted street plans of
different cities, and using a rainbow colormap to visualize B-Matrix
node counts as cumulative probabilities. Between 2011 and 2017,
Wojciech Czech contributed to B-Matrix theory by expanding the
algorithm to be edge-based instead of vertex-based, and devised an
optimization of the BFS approach by pre-computing node distances
in some graph cases [4,5,6,7,8]. In 2010, [9] used B-Matrix alongside
motif distribution to investigate network topology evolution. All
B-Matrix in [9] use a reverse perceptual colormap (yellow-red-black,
with higher values darker), log-transformed and globally normalized,

and NaN instead of zeros. Interestingly, [9] also features a small
B-Matrix explainer using a periodic ring to illustrate an edge-case
where all cells have the same node count and create a more vertical
B-Matrix. In geological applications, rock fractures organize as
networks and exhibit natural variation in their spatial arrangements,
[13] used B-Matrix and portrait divergence among other comparative
tools to build a novel framework for network-based fracture analysis.
Finally, Bagrow and Bollt, authors of the original B-Matrix paper,
wrote a follow-up paper in 2019 using the graph invariant properties
of B-Matrix to define the Network Portrait Divergence graph
similarity metric. Some B-Matrix heatmaps are shown, using the
default matplotlib viridis colormap with logarithmic scaling, zeros
converted to NaN, and showing the zeroth row [2].

There are two visualization systems that integrate a B-Matrix. First is
NetzCope, an all-in-one network explorer that shows a graph’s
B-Matrix with Matlab’s default jet colormap, added to highlight node
degree frequency and graph diameter in addition to direct graph
views like node-link and adjacency matrix [3]. Second is
GraphPrism, which deconstructs B-Matrix into a collection of
independent heatmaps for node-specific metrics, which are
connectivity (cumulative B-Matrix), transitivity, conductance,
density, and neighborhood distance (Jaccard and MeetMin). The
GraphPrism system juxtaposes these heatmaps, each with a reverse
linear colormap of different hue, against a node-link view of the
graph input. GraphPrism only shows modified heatmaps inspired by
B-Matrix properties, but not a B-Matrix itself [11].

Regarding the visual explainer format, GitHub features automatic
rendering of README.md, including image support. As an example,
github.com/tonsky/FiraCode has an effective visual explainer
through a series of infographic-style figures for Fira Code ligatures in
action, which in turn inspired the visual explainer format for
BMatrix_Explainer as a series of images to scroll through in the
repo’s landing page.

3 DATA AND TASK ABSTRACTION

The main input dataset is a graph’s edgelist, a data abstraction about
unique linear connections between items that collectively form a
network. The B-Matrix algorithm is a data transformation that takes
an edgelist and converts into an array of integers. The B-Matrix is a
data abstraction about the structural properties of the input network.

Regarding visual encoding, the graph’s edgelist is also the data
abstraction behind the node-link idiom, which is an intuitive spatial
placement of network elements, empirically found to be helpful in
pattern discovery tasks when juxtaposed against the transformed data
of B-Matrix heatmaps [11]. The B-Matrix data abstraction can be
visually encoded in more ways than the canonical
globally-normalized heatmap idiom. Because each row of the
B-Matrix adds up to the total number of nodes, row-normalization is
a data transformation that can enhance per-row information
discovery.

All cells in a B-Matrix are integers that record frequency counts,
effectively making each row a histogram [11]. So far in literature
these histograms have been encoded by color intensity, but they can
also be encoded by height differences in bars, effectively a classic
histogram bar chart for each B-Matrix row. Bar charts have high
information fidelity in high-contrast monochromatic settings, which
is an effective alternative to the canonical heatmap idiom in contexts
where color perception is compromised.



Figure 2. At A, node-link view of the Fall 2000 College Football Games
network, which has 115 nodes and 613 edges, rendered with
nx.draw_networkx() default force-directed settings, and GML file
sourced from personal.umich.edu/~mejn/netdata. From the B-Matrix
of A, heatmap B and histogram C are globally normalized while
heatmap D and histogram E have row-normalization. At F, node-link
view of the Stanford Bunny 3D mesh as an edgelist, which has 2593
nodes and 7048 edges, rendered with plot_mesh_OBJ.py found in the
BMatrix_Explainer repo, and OBJ file from
github.com/alecjacobson/common-3d-test-models. From the
B-Matrix of F, heatmap G and histogram H are globally normalized,
while heatmap I and histogram J have row-normalization.

4 SOLUTION AND IMPLEMENTATION

This paper presents four visualization solutions (Figure 2). First, the
canonical B-Matrix heatmap idiom as found in literature, with the
distinction of using a reverse perceptual colormap (low values are
bright, high values are dark) for high contrast following [9] and [11],
all zeros converted to NaN, and removing the zeroth row. Second, the
same B-Matrix heatmap idiom but with row-normalization, where
each row gets its own colormap scaling. Third, the canonical
global-normalized B-Matrix presented in monochromatic bar chart
histograms, where each row has a vertical axis range from zero
counts to the total number of nodes. Fourth, B-Matrix as
row-normalized bar chart histograms, where each row has a unique
vertical axis from zero to the per-row maximum node count.

Both the heatmap and histogram idioms described here follow the
data tables with two categorical key attributes (algorithm hops and
counts), derived directly from the B-Matrix, where each cell is
placed in a 2D alignment with these two keys (B-Matrix axes).
Per-cell encoding is different, heatmaps use colormaps and
histograms use rectilinear bar charts layout, but tasks supported by
both are the same, chiefly information discovery, outlier and cluster
detection, and information summary.

All four solutions are implemented in Python. Because B-Matrix
axes are the same across solutions, they follow the same

implementation considerations. To avoid axis cluttering, any axis that
has more than 25 levels would have axis tick numbers every
modulo-10 steps. This is expanded for each order of magnitude,
levels above 250 have ticks every modulo-100 steps, levels above
2500 have ticks every modulo-1000 steps, and so on. Similarly, for
the global-normalized colormap view, a log-transformed colormap is
activated if the difference between the highest and lowest values in a
B-Matrix is 100 or higher. Regarding axis labels, I decided against
them because they can be misleading. For example, the horizontal
axis can be labeled as “node counts”, but this overlaps with each cell
which also has node counts as frequency, so a better x-axis label
would be “number of nodes encountered at given hop”, which is too
long. Ultimately, I think that no labels invites new users to engage
with the visual explainer more deeply and arrive at the correct
interpretation of axis meaning through insight.

With the B-Matrix implementation and visualization scripts
complete, my goal was to find an illustrative example for the visual
README.md of the Matrix_Explainer repo. The input graph for the
explainer had to be small, else the algorithm would take too long to
run through, but not too small so that key B-Matrix properties were
skipped over. To find such a graph, I run my implementation over the
1252 graphs of Graph Atlas corpus as found in the networkx library
through nx.graph_atlas() [14]. Graph number 1115 met all
criteria, and it became the explainer graph (Figure 1).

5 RESULTS

The entire BMatrix_Explainer project is a GitHub repo
(github.com/dirediredock/BMatrix_Explainer) that has three
main components. First, the root folder has a README.md visual
explainer of B-Matrix data abstraction, containing a guide of how the
algorithm works, B-Matrix properties, and benchmarking examples.
Second, within the scripts folder, algorithm_BMatrix.py (adapted
from github.com/bagrow/portraits/blob/master/B_matrix.py)
takes an undirected networkx object and converts it into a numpy
array B-Matrix. Third, the scripts plot_BMatrix_colormap.py and
plot_BMatrix_histogram.py in the scripts folder render heatmap
and histogram idioms, respectively, out of a numpy array B-Matrix.

Figure 2 shows two large networks each with the four figure exports
of BMatrix_Explainer. In Figure 2, heatmap B is a reproduction of a
published network portrait (Figure 1 in [2]), with the difference of
Figure 2 here using reversed inferno instead of default viridis, and
removing the zeroth row. To expand on this published figure, here
views C, D, and E show the alternative B-Matrix visualizations
presented in this paper. Note high the fidelity of D and E which have
row-normalization. Also in Figure 2, note that view I for Stanford
Bunny the 26th hop is the first row where the zeroth column has
nodes accounted for, and from there onwards hops sharply decrease
in presence beyond the zeroth column - a structure only revealed by
row-normalization (both in colormap and bar chart encoding).

6 DISCUSSION AND FUTURE WORK

Both strengths and weaknesses of this project stem from the reliance
on a Python implementation. On one hand, this project leverages the
strength of scientific libraries (numpy, networkx, matplotlib) which
have a global community of researchers that can pick up the contents
within BMatrix_Explainer and continue to build from it within the
Python scientific ecosystem. This has technical advantages, one of
them being the integration of publication-ready 300dpi PNG figure
exports for sharing visualization results. On the flipside, this leaves
non-Python users with a learning curve before they can implement
BMatrix_Explainer on their own data. For example,
algorithm_BMatrix.py requires a networkx graph object, and while
the repo does contain examples of how to convert OBJ, GML, and
CSV data into an undirected graph object, this is not an exhaustive
list. To extend BMatrix_Explainer beyond Python users, a
browser-based JavaScript implementation could democratize
implementation, but would require somewhat strict graph input to be
limited to text-only (curated edgelists in CSV or TSV, for example).

Regarding future work, I image a novel system that juxtaposes a
node-link or adjacency matrix view of the input graph with its



B-Matrix, with the interactive option to select cells in the
row-normalized heatmap B-Matrix view to reveal selected nodes in
the node-link view, for example. This can greatly enhance structure
discovery and B-Matrix exploration and understanding.

7 REFERENCES

[1] Bagrow, J. P., Bollt, E. M., Skufca, J. D., & Ben-Avraham, D.
(2008). Portraits of complex networks. EPL (Europhysics
Letters), 81(6), 68004.

[2] Bagrow, J. P., & Bollt, E. M. (2019). An information-theoretic,
all-scales approach to comparing networks. Applied Network
Science, 4(1), 1-15.

[3] Barber, M. J., Streit, L., & Strogan, O. (2011). NetzCope: a
tool for displaying and analyzing complex networks. In
Quantum Bio-Informatics IV: From Quantum Information to
Bio-Informatics (pp. 437-450).

[4] Czech, W. (2011, May). Graph descriptors from B-matrix
representation. In International Workshop on Graph-Based
Representations in Pattern Recognition (pp. 12-21). Springer,
Berlin, Heidelberg.

[5] Czech, W. (2012). Invariants of distance k-graphs for graph
embedding. Pattern Recognition Letters, 33(15), 1968-1979.

[6] Czech, W., & Łazarz, R. (2016, June). A method of analysis
and visualization of structured datasets based on centrality
information. In the International Conference on Artificial
Intelligence and Soft Computing (pp. 429-441). Springer,
Cham.

[7] Czech, W., & Yuen, D. A. (2011, August). Efficient graph
comparison and visualization using gpu. In 2011 14th IEEE
International Conference on Computational Science and
Engineering (pp. 561-566). IEEE.

[8] Czech, W., Mielczarek, W., & Dzwinel, W. (2017). Distributed
computing of distance‐based graph invariants for analysis and
visualization of complex networks. Concurrency and
Computation: Practice and Experience, 29(9), e4054.

[9] Gorochowski, T. E., di Bernardo, M., & Grierson, C. S. (2010).
Evolving enhanced topologies for the synchronization of
dynamical complex networks. Physical Review E, 81(5),
056212.

[10] Gunaratna, C., & Menezes, R. (2011, August). Using Network
Science to Understand the Structure of Brazilian Popular
Music. In 2011 IEEE 11th International Conference on
Computer and Information Technology (pp. 395-402). IEEE.

[11] Kairam, S., MacLean, D., Savva, M., & Heer, J. (2012, May).
GraphPrism: compact visualization of network structure. In
Proceedings of the international working conference on
advanced visual interfaces (pp. 498-505).

[12] Lafhel, M., Cherifi, H., Renoust, B., El Hassouni, M., &
Mourchid, Y. (2020, December). Movie script similarity using
multilayer network portrait divergence. In the International
Conference on Complex Networks and Their Applications (pp.
284-295). Springer, Cham.

[13] Prabhakaran, R., Bertotti, G., Urai, J., & Smeulders, D. (2021).
Investigating spatial heterogeneity within fracture networks
using hierarchical clustering and graph distance metrics. Solid
Earth, 12(10), 2159-2209.

[14] Read, R. C., & Wilson, R. J. (1998). An atlas of graphs (Vol.
21). Oxford: Clarendon Press.

[15] Volchenkov, D., & Blanchard, P. (2007). Comparative Study of
Cities as Complex Networks. arXiv preprint arXiv:0709.4447.

8 MILESTONES

A total of 80 hours allocated to 14 weeks is 5.7 hours a week.

Week 01 - Sep 12 to Sep 16 - Started work on recursive scraper and
JSON format for data export.

Week 02 - Sep 19 to Sep 23 - Scraper and JSON data export,
complete scraping of programming language infoboxes.

Week 03 - Sep 26 to Sep 30 - Tentative plan is to study the network
structure of programming languages according to Wikipedia.
Project Pitch due September 28 at noon.

Week 04 - Oct 03 to Oct 07 - Data analysis of cardinality and
properties of programming language directed graphs.
Important to focus on tasks, warning about investing in a dead
end project path.

Week 05 - Oct 10 to Oct 14 - No coding or data analysis, only focus
on how to pivot towards a design study.

Week 06 - Oct 17 to Oct 21 - Design study based on a user
(Wikipedia editor) and a specific task (improving infoboxes).
Project Proposal due October 21 at noon.

Week 07 - Oct 24 to Oct 28 - Genericizing the scraper so it works
with more topics.

Week 08 - Oct 31 to Nov 04 - Completed extraction of Fortran and
Carl Jung dense knowledge networks.

Week 09 - Nov 07 to Nov 11 - Shifting focus to B-Matrix literature.
Week 10 - Nov 14 to Nov 18 - Project Update due November 15 at

3pm. Applying B-Matrix to dense network analysis.
Week 11 - Nov 21 to Nov 25 - BMatrix_Explainer literature and

algorithm covered, GitHub repo content started.
Week 12 - Nov 28 to Dec 02 - Alternative B-Matrix visualization

encodings and idioms.
Week 13 - Dec 05 to Dec 09 - Code, figures, and documentation for

BMatrix_Explainer GitHub repo complete.
Week 14 - Dec 12 to Dec 16 - Final presentation and report.


