
2022.12.14
CPSC 547 Information Visualization

BMatrix_Explainer

by Matias I. Bofarull Oddo

Department of Computer Science
The University of British Columbia

B

Influenced by

Influenced

A

C D

A

Influenced by

Influenced

B D E

E

Influenced by

Influenced

A C D

C

Influenced by

Influenced

B

 D E

D

Influenced by

Influenced

A B C

E

A

B C

D

E

Influenced

A

B C

D

E

Influenced by

Long-story short,
I made a Depth-First
Search recursive scraper for
Wikimedia API to extract
knowledge networks
hidden in semantically
rich infobox fields.

My goal was to interlink
these networks to fill
information gaps,
and then create a
human-in-the-loop
vis tool for Wikipedia
editors.

As you can guess,
it didn't go as planned ...

HTM
L regex

 D
FS re

curs
ive

W
ik

ip
edia

 scra
per hre

f A
PI d

ic
t

re
dire

ct
 so

lv
er

Oh no, automated

myself out of a job

bonk

LESSON
Software that

gap-fills Wikipedia

is NOT an InfoVis project

Fortran Carl Jung

What are other ways to understand
and better work with information

dense networks?

Fortran Carl Jung

Bagrow, J. P., & Bollt, E. M. (2019).
An information-theoretic, all-scales approach to comparing networks. Applied Network Science, 4(1), 1-15.

Bagrow, J. P., & Bollt, E. M. (2019).
An information-theoretic, all-scales approach to comparing networks. Applied Network Science, 4(1), 1-15.

Bagrow, J. P., & Bollt, E. M. (2019).
An information-theoretic, all-scales approach to comparing networks. Applied Network Science, 4(1), 1-15.

???

???
???

???

Gorochowski, T. E., di Bernardo, M., & Grierson, C. S. (2010).
Evolving enhanced topologies for the synchronization of dynamical complex networks. Physical Review E, 81(5), 056212.

Kairam, S., MacLean, D., Savva, M., & Heer, J. (2012, May). GraphPrism: compact visualization of network structure.
In Proceedings of the international working conference on advanced visual interfaces (pp. 498-505).

Bagrow, J. P., Bollt, E. M., Skufca, J. D., & Ben-Avraham, D. (2008).
Portraits of complex networks. EPL (Europhysics Letters), 81(6), 68004.

FUN FACT
This is the

first published

network portrait.

How exactly do we get a graph’s B-Matrix? How do we interpret a network portrait?
That’s exactly what BMatrix_Explainer is all about.

github.com/dirediredock/BMatrix_Explainer

Czech, W., & Yuen, D. A. (2011, August). Efficient graph comparison and visualization using GPU.
In 2011 14th IEEE International Conference on Computational Science and Engineering (pp. 561-566). IEEE.

???

To get started with BMatrix_Explainer,
consider this small graph as an
explainer example:

● It has 7 nodes and 14 edges

● Edgelist: 1-2
1-3
2-4
2-5
2-6
2-3
3-4
3-5
3-6
4-5
4-6
5-7
5-6
6-7

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

We start by picking a node, and initialize an
empty matrix.

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Rows are for number of hops away from this
starting node, and columns are for node counts.

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

We only have one node at hand (no hops yet),
so we flip the bit at zeroth row and first column.

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Then at first hop, there are two nodes - so we
flip the bit at the first row and second column.

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

At second hop there are three nodes, so we flip
the bit at the second row and third column.

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

At third hop there is one node (last one), so we
flip the bit at the third row and first column.

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

This completes the bit matrix of node 1 (of 7).

0 1 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

1 0 0 0 0 0

We repeat and get a bit matrix for node 2 (of 7),
and we store the already completed matrix.

0 1 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

1 0 0 0 0 0

This is the bit matrix of node 3 (of 7), and we
save the two already completed matrices.

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

The bit matrix of node 4 (of 7), and we save the
three already completed matrices.

0 1 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

1 0 0 0 0 0

The bit matrix of node 5 (of 7), and we save the
four already completed matrices.

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

1 0 0 0 0 0

The bit matrix of node 6 (of 7), and we save the
five already completed matrices.

0 1 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

1 0 0 0 0 0

Finally, the bit matrix of node 7 (of 7), and we
save the six already completed matrices.

0 7 0 0 0 0

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 0

We add these seven bit matrices element-wise
into a single matrix. This ends the algorithm.

0 7 0 0 0 0

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 0

We’re done!

The B-Matrix
of the graph.

And it has a bunch
of properties.

0 7 0 0 0 0

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 0

7

7

7

7

Also each row
adds up to the
total number
of nodes.

5-degree

4-degree

3-degree

2-degree

0 7 0 0 0 0

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 0

The first row marks the number
of times different node counts
happened at exactly one hop
away from the starting node.

The node degree is how many
edges a node has, so this row is

effectively a record of frequency
of node degrees.

1-degree

1 52 3 4

0 7 0 0 0 0

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 0

We can visualize the distribution of
node degrees with a bar chart of
counts (histogram).

Frequency of node degrees

0 1 2 3 4 5

0 7 0 0 0 0

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 0

[Row 1, Column 2] Two nodes of degree 2

Frequency of node degrees

0 1 2 3 4 5

0 7 0 0 0 0

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 0

[Row 1, Column 4] One node of degree 4

0 1 2 3 4 5

Frequency of node degrees

0 7 0 0 0 0

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 0

[Row 1, Column 5] Four nodes of degree 5

0 1 2 3 4 5

Frequency of node degrees

0 7 0 0 0 0

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 0

Finally, the last row is the maximum
number of hops the algorithm got
through before running out of
nodes.

In other words, the final hop number
is equivalent to the diameter of the
graph, L-shell of 3 in this case.

Frequency of node 3-shell degrees

0 1 2 3 4 5

0 7 0 0 0 0

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 0

Frequency of node 3-shell degrees

0 1 2 3 4 5

The graph diameter is the length of the shortest
path between the two most distanced nodes.

0 7 0 0 0 0

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 0

In contrast to this explainer
example, the B-Matrix of a
real-world graph can be
very large.

It is not practical to show this
data abstraction directly with
numbers, we need a visual
encoding.

1

2

3

4

5

6

7
0 7 0 0 0 0

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 0

In literature
this is solved
by mapping the
B-Matrix node
count to a
colormap
range.

1

2

3

4

5

6

7
0 7 0 0 0 0

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 0

And the result
is a heatmap.

1

2

3

4

5

6

7
0 7 0 0 0 0

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 0

However, we can
do one more edit to
increase information
resolution in this
heatmap idiom.

Notice that the zeroth
row always has the
highest value
(which sets the
colormap extreme).

In large networks
this value can be
so high that the
colormap must be
log-transformed.

1

2

3

4

5

6

7

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 0

We can safely
remove the
zeroth row.

This is fine because
this row only contains
redundant data
(total node count).

0 0 2 0 1 4

0 4 1 2 0 0

5 2 0 0 0 01

2

3

4

5

Then we can get
higher fidelity by
rescaling the
colormap.

1

2

3

4

5

That’s it!
This figure is the
network portrait

of the graph.

1-2
1-3
2-4
2-5
2-6
2-3
3-4
3-5
3-6
4-5
4-6
5-7
5-6
6-7

Graph | networkx.graph_atlas(1115)
 |
Nodes | 7
Edges | 14

Now let’s explore real-world networks with

a Python-based B-Matrix visualization GitHub repo.

BMatrix_Explainer

1-shell

2-shell

0 1 2 3 4 5

3-shell

Recall that each row of the B-Matrix can be
visually encoded as stacked bars for count data.

BMatrix_Explainer fully features this visualization
with bars encoding node counts, or histograms.

And that is not all! To further support interpretation tasks,
in BMatrix_Explainer both color and bar encondings can have

per-row normalization to enhance information discovery within hop level.

Graph | Fall 2000 College Football Games
 | personal.umich.edu/~mejn/netdata
 |
Nodes | 115
Edges | 613

A small “small-world” network.

Graph | Semantic Network from "Fortran"
 | dirediredock/infobox_interlinker
 |
Nodes | 471
Edges | 1169

Knowledge network
from Fortran infobox.

Graph | Semantic Network from "Carl_Jung"
 | dirediredock/infobox_interlinker
 |
Nodes | 6907
Edges | 16592

Knowledge network
from Carl Jung infobox.

For future work, I would like to build a B-Matrix reverse-highlight visualization system.
This can help network exploration tasks such as understanding nodes with

special properties, where these located, and in relation
to what global network features.

Utah Teapot

has nodes at

degree-40

Thank You!

To check out code, data, and more figures

https://github.com/dirediredock/BMatrix_Explainer
https://github.com/dirediredock/infobox_interlinker

