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Background

All cells have the same set of DNA and genes

How do different cell types arise from the same set of blueprints?

Not all genes are expressed (turned on) in every cell

Expression entails Transcription (DNA to RNA) and Translation (RNA to protein)

RNA is typically considered an inert intermediate between long term information storage (DNA) and
the functional form of the information (protein)
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Buccitelli et al., Nat Rev Gen, 2020.



How do we learn about gene expression?
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Example count data of 12 averaged cell populations (columns) for a

few given genes (rows)

Often researchers are only interested in a
single gene

However when performing exploratory
experiments or trying to characterize a new
system, a more full view is more valuable
Based on how the technologies have
developed over the past two decades,
RNA sequencing is the leading method for
profiling gene expression

Classically, cells are taken as a population,
and RNA is isolated and sequenced,
producing a count for each gene

However this approach misses
heterogeneity in the averaged sample,
erasing the evidence for rare cell types or
states



Single-cell RNA sequencing (scRNAseq)
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One recent method that addresses
heterogeneity is single cell RNA
sequencing

Rather than averaging the RNA across all
cells, each cell is isolated first, then RNA is
collected

This method generates orders of
magnitude more data

Rather than each sample or population
average having a count per gene, each cell
has a count per gene

Experiments can include >20 000 genes
and >100 000 cells with multiple “batches”
of cells



Cell type labelling task

e Cells are dynamic entities that are constantly
changing in response to internal and external

factors.
e Assigning a discrete label to cells (often

2lo|%o

)
e

based on gene expression) is common RedBlood Cells  White Blood Cells Nerve Cells Stem Cells Epithelial Cells

{URTEHEELT T
R

practice to ease the process of interpreting
sequencing data @ @
e Large efforts focused on linking changes in Intestinal Cells Bone Cells Sperm Cells ovum Enterocytes
gene expression to the behaviour of certain
cell types g ‘
o Typically, disease states only appear in Fat Cells Chondrocyte Cardiac Cells smooth cells Skeletal Muscles
SpeCiﬁC cell types https://lwww.geeksforgeeks.org/structure-and-types-of-animal-tissues/
o Connecting cell type to disease to

potential intervention is a common goal



Dataset

biOR iV e RNA expression data is provided as a flat table
X with 70,988 items (cells) and 22,050 attributes
(genes)
Multimodal single cell data integration challenge: results and lessons PY The value for each item-attribute pair is a
learned . . . .
quantitative value representing the normalized
® Christopher Lance, & Malte D. Luecken, & Daniel B. Burkhardt, (& Robrecht Cannoodt, i i
© Pia Rsat:tpenestrazc::Anna Eat:dach,l;‘:ifﬂyi Ubingazhiebov. Zl;ﬂ-ji: C;o. Kaiowene ‘l:):ng.aszr::er Khan, Qiao Liu, and tranSfO rmed RNA cou ntS (quantltatlve
Nikolay Russkikh, Gleb Ryazantsev, Uwe Ohler, |nf0 rm at|on)
NeurlPS 2021 Multimodal data integration competition participants, &2 Angela Oliveira Pisco, Jonathan Bloom, . .
© Smita Krishnaswamy, © Fabian J. Theis e An additional 5 attributes encode:
doi: https://doi.org/10.1101/2022.04.11.487796 o Ce"_|d (Categorlcal) Unique alphanumeric
Number of cells characterized by cell type Number of cells characterized by day String that iS aSSigned to eaCh Ce”
o - ¥ o day (sequentially ordered quantitative): the
o000 oo [ e time point at which sequencing was
o o - - :,,s performed
® o e s o donor (categorical): a unique identifying
g J oo number that is assigned to the 4 healthy
ol — ,_..H , adult donors
T e T ’ osy ' o cell_type (categorical): inferred cell type

label

kaggle Open Problems - Multimodal Single-Cell Integration

Predict how DNA, RNA & protein measurements co-vary in single cells




Goals of our analysis project

e Explore a scRNAseq dataset using common and accessible analysis packages and analyze how
the different visual encodings can affect interpretations and guide downstream analyses
o Seurat (https://github.com/satijalab/seurat)
o  Scanpy (https://github.com/scverse/scanpy)
o Additional softwares: trajectory inference (Monocle3), graphs (PAGA)

1. Evaluate how well are overall cell type differences visualized between and within timepoints.

2. Evaluate how well are changes in specific genes visualized between and within timepoints.



Cell types between and within time points with DR

Day 3 Day 2

Day 4

pc2

t-SNE

tSNE

UMAP

UMAP

UMAP2

SNEL

UMAPL

Dimensionality reduction is a common tool for
global analysis of scRNAseq data

Each point represents a cel

Three common DR tools

o PCA
o t-SNE
o UMAP

Clear differences between linear (PCA) and
nonlinear DR viz

Some noticeable differences between UMAP
and t-SNE for finer details or clustering
Qualitative interpretations

B-cell progenitor
Erythrocyte progenitor
Hematopoietic stem cell
Mast cell progenitor
Megakaryocyte progenitor
Monocyte progenitor
Neutrophil progenitor
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Three different representations of the same heatmap

MkP
MoP
NeuP

each row is the aggregation of all the cells of that cell type
Right, each row shows the distribution of expression values for that cell type

IS a ce

each row

Left:
Middle



Comparing between within timepoints with density plots

Looking at individual genes
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Expression Level

Each cell type is represented by the
density of expression values
Each column of the graph is a selected
ene
lote that while this gives information on
a single gene, it also gives us an idea of
the distribution of that gene
Note the large number of cells that have
no expression level of a given gene
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Trajectory inference

Day 2

Cell type
* BP
* EnyP
® HsC
© MasP
MkP
MoP
NeuP

UMAP 2

0 0
UMAP 1 UMAP 1

e UMAP dimensionality reduction
e Learn a trajectory (pseudotemporal ordering) that fits the cells’ lower-dimensional coordinates
(principal graph embedding algorithms)

1



Take away from standard pipeline

Many options for examining expression within a single time point
No inbuilt tools for looking at genes that are dynamic across timepoints in a given cell type
Comparisons with DR tools also tend to be very qualitative and many key comparisons cannot be
made between timepoints
All of the tools tested were very computationally intensive - issues for accessibility

o DR plots took ~30 minutes to run per plot

o Unable to run many existing trajectory inference softwares given our hardware (laptops)

Dichotomy between available visual encodings provided by these widely used
toolkits.
o Attempting to capture global variation in the dataset where metrics are purely qualitative

(dimensionality reduction)
o  Selection of a few specific genes for more quantitative analyses

Future direction of visual encodings: interactivity, combine dimensionality
reduction methods with visual encodings that can lead to quantitative
interpretations
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