
Scaling Up Radial Graph Layouts

Cody Robson

University of British Columbia

ABSTRACT

The well-known radial graph layout technique has plenty of
advantages for graph visualization and graph exploration, but is
quite limited in the size of graphs it can display effectively
because the layout is inherently global and allows far away or out
of view nodes to distort the focus region. The primary
contribution of this project is to introduce sub tree clustering to
allow the layout algorithm to run locally and provide a visually
pleasing focus region regardless of the overall graph size. This
solution builds upon an existing radial graph visualization
technique published in Yee et. al.'s Animated Exploration of
Graphs with Radial Layout published in Proc. InfoVis 2001. In
addition to clustering, other common information visualization
techniques are added to Yee et. al.'s solution to further aid with
graph navigation and visualization as the graph size increases.
KEYWORDS: Graph exploration, radial layout.

1 INTRODUCTION

 The focus of this project is to provide extensions that aid in the
scaling of the radial graph layout algorithm. Radial graph layouts
emphasize shortest path distances from a central focus node to all
other nodes in the graph by placing nodes on layout rings
emanating from the center of the graph. First, the layout
algorithm performs a breadth first search from a primary or focus
node to all other nodes in the graph (which must be a single
connected component). Using this tree, it first places

the focus node, now the root of the tree, in the center of the
canvas, at the zero ring. It then partitions the radians of the first
ring, some determined radius away from the center, amongst the
root's children based on the span, or number of leaf nodes, in each
of their sub trees. The algorithm then recursively partitions each
of the children node's slice of the next layout ring amongst its
children. This encoding allows a user to determine path distance
from any node to the focus just by observing which ring a given
node is placed on. Furthermore, sub trees will ideally be spread
out as well as possible since their allocation space is proportional
to their span. Additionally, sub trees and their edges are
guaranteed to not intersect one another because each child node
isn't allowed out of its allocated range of radians.

This type of layout is ideal for data for which the shortest path
between two nodes is the most important, and other paths are
relevant only for context. Datasets for which this is advantagous
are things like network data, where connections would be routed
through the shortest path, and alternative paths are meaningful
only in the event of a log jam or network outage. In order to easily
judge distances between two non-focus nodes the user must select
one of them to be the new focus node and the layout algorithm
must be rerun.

As will be described in detail later, this layout can scale well
under certain circumstances but gives very poor layouts for focus
areas in tree-like or sparsely connected sub regions of large
graphs. Ideally, this layout technique should work on a local
neighbourhood around the focus node and not be negatively
effected by large number of nodes far away from the focus region.
This is the primary intuition behind sub tree clustering, a

*cjrobson@cs.ubc.ca

technique that hopes to allow radial graph layout to scale beyond
small well-connected graphs.

2 PREVIOUS WORK

Radial graph layout is only one of many tree-based layout
algorithms. Some tree placement algorithms utilize hyperbolic
geometry in order to handle large tree or graph sizes [5][7]. These
types of methods do not recompute the layout when the user
changes their focus, and instead allows the user to pan in
hyperbolic space. NicheWorks [10] is a large scale graph layout
technique that was derived from a radial graph layout, and gives

excellent details about the calculation of the original radial graph
layout properties. The final implementation is not a direct
application of radial graph layout but more of an evolution.

Choosing a layout algorithm is very much dependant on a
perticular dataset, and if my project was specific to a dataset I
would have most likely chosen more than one different layout
techniques to compare and contrast with my data. However, I
have decided to take a technique-driven approach and start with a
recent radial graph layout solution and extend it to deal with larger
datasets.

A recent notable radial graph layout solution is Yee et. al.'s
Animated Exploration of Graphs with Radial Layout [12] which
promotes the use of animated focus node transitions, using
interpolation of polar node coordinates and traditional animation
techniques. They also apply some useful layout constraints to
allow for minimal graph layout changes between focus transitions.
As mentioned in their paper, their solution requires a node
aggregation technique of some kind if it is to do a good job of
visualizing large graphs. My solution intends to provide a
possible node aggregation technique, which I will refer to as sub
tree clustering, to allow radial graph layouts to apply to arbitrary
sized graphs while maintaining the visually pleasing radial layout
in the rings around the focus region.

3 DESCRIPTION OF PROBLEM

The radial graph layout utilizes the entire graph when
determining even the first of the root node's children's available
space. For very well connected graphs or mesh-like data, the sub
trees of the root's first few generations of children will likely be
quite balanced, leading to a very pleasing graph layout. However,
in the event that much of the rest of the graph is only accessible
through one of the the root's children, that child's allocated space
is going to comprise of the majority of the available space,

Figure 1: A radial placement diagram from [10]. Notice
sub tree S is given half of the available canvas, which it
divides up amongst its children nodes based on the span of
their sub trees.

Figure 2: Traditional radial graph layout of a tree near a leaf node. Notice
all the nodes on the first three rings, the focus region, are constrained to a
straight line, giving the user a poor layout for the region that their focus node
is implying they care most about.

Figure 3: Sub tree clustering without re-running the layout algorithm does
little to prove the poor placement of the first few generations of children
nodes.

smashing the rest of the root's children into a very small sliver of
radians in the first few rings and allowing children of the
aforementioned bottleneck node to sweep across the rest of the
graph and consume the majority of canvas space, regardless if
they are very far away from the root via traversal (figure 2).

This phenomena is best visualized in a small tree, which is not
itself a contrived example because many generic graphs will have
subregions which are trees. By having the radial graph layout
algorithm run on tree data and traversing one's way to a leaf node
or node a few jumps away from a leaf node, this unpleasant,
unbalanced partition effect becomes apparent (figure 2). Because
the root's children that lead to the tree leaves will have a very
small span, they are allocated a minuscule radial slice in
comparison to the root's bottleneck child, which will lead to the
entire rest of the graph. In addition to trees, a sub graph with one
edge to another sub graph will invoke this same unbalanced
partitioning. Because the breadth first search involved in the
layout builds a tree out of the data, only one sub tree connected to
the focus node will be able to claim the entire sub graph because it
was the node with the shortest distance to that single isthmus-like
edge.

The solution must in some way allow for the layout of the focus
region, or the first few rings around the centre, to be laid out
independently from the rest of the graph, most of which will not
even be visible to the user (figure 3).

Beyond poor layouts, as graph size increases, a single-jump
transition from one node to another becomes harder and harder for
a user to visually grasp. Animation techniques utilized in Yee et.
al.'s radial graph visualization work very well for nodes that are in
the user's field of view, or even just beyond it. Once the new
focus node becomes far outside the viewing window, however,

layout constraints and slow-in/slow-out animation will not be
enough support for the user to mentally parse the rapid flow of
possibly thousands of nodes across the screen at one time. As
proposed in [12], a large transition must be broken up into smaller
user-friendly chunks that are easily to follow in succession.

4 DESCRIPTION OF SOLUTION

My program builds upon Yee et. al.’s program description,
including the features their solution implemented to best support
focus transitions as well my own extensions to aid with graph size
scaling. The key feature of their solution that became the baseline
for my program was the slow-in/slow-out polar coordinate
interpolation of nodes between layouts. The general premise is
that linear interpolation of Cartesian coordinates caused quite a bit
of crossover among nodes during layout transitions. By
interpolating polar coordinates, nodes and sub trees will glide
along the layout rings and be less likely to cross paths with each
other. Furthermore, traditional animation techniques like slow-in/
slow-out movements provide the user with useful motion cues, so
that they are well situated to mentally process moving nodes as
they begin to move faster. Their paper was quite convincing that
these properties best allowed the user to keep track of their current
location in the graph during a focus transition, to the point that I
felt these features should be enabled permanently.

The two layout constraints talked about in [12] were also
implemented. The first constraint enforces that a focus node’s
edge to its previous parent node is maintained in the new layout.
This will reduce unnecessary and arbitrary rotations. The second
constraint forces nodes to maintain the order of their children
nodes. For tree graphs, this is not very hard to enforce, but in
radial layouts, non-tree neighbour nodes become child nodes and
vice versa. Keeping this constraint reduces the amount of child
node travel from one layout to another. Children will still be
forced to travel large distances when the shortest path from the
focus to the child node becomes rerouted through another parent
node.

Among the features of Yee et. al.’s implementation I decided to
omit from my solution were dynamic node addition and varying
node sizes. I felt these features were meant to compliment their
file-sharing network data and had no implication on the radial
layout technique itself.

Yee et. al.’s own proposed extensions proved to be the most
beneficial of the new features added in my solution. First and
foremost, node aggregation or, as I call it, sub tree clustering
removes the single biggest obstacle in allowing radial graph
layouts to scale up to graphs of hundreds or thousands of nodes.
Since the graph layout is a tree, nodes at a given clustering ring
can represent the entire sub tree of which that node is the root.
More importantly, the radial node placement algorithm can take
this into account and not factor in clustered sub trees when
partitioning the available space (figures 2 and 3 illustrate the
layout algorithm ignoring or considering clustering). This is the
all-important migration from a global layout to a local layout
needed to produce good results near the focus node as graph size
increases.

Figure 4: Once the layout algorithm is re-run with knowledge of the
clustering level, the placement of nodes along the first few rings is much
more visually pleasing. This is a simplistic example, a typical user would
most likely view more than 3 rings before invoking sub tree clustering.

The second proposed extension in [12] is intermediate node
transition steps or a transition series for large focus transitions.
This is a much needed feature, as it becomes increasingly harder
to follow the transitions as the distance between the old and new
focus nodes increases. Additionally, if the new focus node is
currently omitted as part of a sub tree cluster, a single, large
transition to it will be nearly impossible for the user to track. This
transition series can either be specified by jump size or total
number of jumps from beginning to end.

I included a few other visualization features to my solution to
aid with graph size scaling and the core graph visualization in
general. The inclusion of clustering made the need for fade-in
fade-out support quite apparent, as nodes, edges, clusters, and
labels materialize and vanish without warning. By linearly fading
these elements as they cluster and uncluster, the user is better able
to track which nodes became members of which clusters during a
focus transition. Also, by making the amount of transparency a
factor of the node's distance to the origin, the fade-in and fade-out
rates coincide with the slow-in/slow-out animation, hopefully
providing a similar visual cue.

Focus+context, the idea of introducing distortion to a
visualization technique in order to emphasize a focus region and
include surrounding data mainly to provide context for that focus
region, is a very important principal of many Information
Visualization solutions and is very easy to include in a radial
layout. Normally, the distance between each layout ring is
constant, but by instead making the ring's radii grow
logarithmically, more space is given between the first few rings
and rings around the peripheral become closer together. Being
able to visualize the local neighbourhood around the focus is a
large component of this layout technique, and this improves that
aspect at the cost of pushing further away nodes closer together.
However, this disadvantage is marginalized by the inclusion of
clustering, which would omit the rendering of these far away
nodes to begin with (figure 10).

Many InfoVis papers deal with the process of tying zoom to a
pan movement. One such example that provides an excellent
mathematical framing of this notion is [11]. The idea is that a
system would have to pan less when it is zoomed out, in addition
to allowing the user to see more of the dataset move slower and
thus better keep track of their position in the dataset. Since this
application does no true panning per se, one could characterize a
change in focus as closely related to a pan, as the user is moving
across the dataset, just not in a traditional moving-camera/static-
world situation. Because of this a zoom-on-transition feature was
added that zooms out an amount relative to the distance between
the current and new focus nodes. The calculated zoom out
amount is spread across the transition series so that each step
slowly zooms out during the first half of the transition and zooms
back in during the later half to return the user to their preferred
zoom level.

The rest of the features are not visualization techniques but
rather included to make the final result as visually pleasing as
possible (figure 5). Node drawing has two available modes. One
draws nodes as low-cost no-frills coloured squares with black
outlines for programmable shader-impaired systems. The other,
intended for modern hardware, uses an impostor sphere billboard
shader to draw the nodes as circles with per-pixel Phong-esque
shading. This allows the nodes to appear as perfect circles at all
scales and still be rendered with only two triangles. The shader
requires the lowest subset of shader abilities, Shader Model 1.0,
so any card supporting the OpenGL Shading Language (GLSL)
should be capable of its execution.

The other aesthetic feature is the inclusion of anti-aliased text
labels for each of the nodes. These labels are placed just below
each node, and a collision detection process runs a axis-aligned
bounding-box check on each label to find intersections and hide
labels of lesser priority (i.e. further away from the center) so that
the user never has to decipher overlapping characters. Because
the user is allowed to rotate the graph at any time, this bounding

Figure 5: Aesthetics of node rendering. The imposter sphere will have a
crisp circular edge regardless of zoom level. The anti-aliased FTGL text
label also appears smooth.

Figure 6: Nodes and clusters fade in and fade out as nodes interpolate
between the cluster ring (in this case, the first ring) and the first ring
beyond it.

box calculation has to be run many times and therefore it is best to
utilize multithreading so that a decent frame rate can be
maintained.

5 THIRD PARTY SOFTWARE

I chose to do all the rendering in OpenGL[4] and its associated
shading language, GLSL, because of its speed and flexibility. The
imposter sphere shader is compatible with Shader Model 1.0 or
newer video cards. I had done previous work with the FLTK [3]
windowing tool kit and decided to use it again because of its light
weight, C++ implementation, and easy to use wysiwyg editor.
Both supported file formats are XML based (GraphML and the
InfoVis 2003 Contest tree data files), and parsed with the IrrXML
[2] library, the stand-alone XML-reader associated with the open-
source Irrlicht game engine [1]. There exist a plethora of font
rendering libraries for OpenGL, and I chose FTGL [6] for its
support for nice-looking anti-aliased TrueType fonts and OpenGL
display lists. All other aspects of the program were implemented
from scratch and are described in the following section.

6 IMPLEMENTATION DETAILS

When a node is selected to become the focus (both by the user
and for initial layout), a breadth-first search (BFS) determines the
new tree layout. Once the parent-child relationships are
determined, the span of each node is computed and starting at the
root, the radians of the circle are divided amongst the children
nodes based on the span of their sub trees. Each node keeps track
of their previous, current, and new ring value and orientation theta
so that it can interpolate the two positions during the slow-in,
slow-out animation function. The parent-child relationships must
be determined with care. Each node keeps a list of its neighbours
and the subset of neighbours deemed its children. In order to
enforce the neighbour-ordering constraint, the order of these
children must be consistent when children nodes transition to
neighbour nodes and neighbour nodes become children, an effect
of a new focus finding a new shortest path to a given node based
on the initial BFS. This is done by examining the direction of the
edges connecting the neighbouring nodes to the current node and
ordering them counter-clockwise starting at the current node’s
parent edge (or former parent edge in the case of the parent-less
focus node).

The animation function is called at each frame, and it is
responsible for updating the positions of all the nodes as well as
the current zoom level. It uses a quadratic velocity function
multiplied by the time since the last frame to keep the transition
times independent of frame rate. In general, transitions about a
second in length seemed to be a good trade off between providing
the user adequate motion queues and waiting too long for
animations to complete. Since the movement of each node is
independent of all other nodes, this process could be threaded in
the event the number of nodes becomes exceedingly large.
However, I found the single-threaded implementation adequate
for graphs in the hundreds of nodes.

The zooming is done in the animation function and is treated
exactly the same as a node interpolating two positions. The
previous, current, and intended zoom levels are all tracked so that
the user can always modify the intended zoom level and the
zooming speed should smoothly change to accommodate the
larger or smaller zoom distance. Zoom level is specified either by
a user interface slider or by the mouse wheel.

If a transition path other than 100% is activated from the UI, the
path of transitional nodes from the current focus to the new focus
is saved as the transition series. When the animation function
completes without updating any node’s position, the layout
algorithm is called for the next node on the transition series. If the
zoom on transitions option is selected from the UI, an amount of
unzooming is determined based on the current ring position of the
new focus (the last node in the transition series). Each node of the
transition series carries with it a new zoom level value, which
starts at the current zoom level and increases to the predetermined
unzooming amount for the centre nodes and decreases back down
to the current zoom level for the last node.

The nodes themselves have two rendering modes. The first is a
simple coloured square with a black outline, done in two
rendering passes. A custom shader could be written to do this in a
single pass, but this mode was included to support shader-

Figure 7: Red outlines illustrate the actual rendered
geometry as opposed to the perceived impostor sphere.

Figure 8: Available transition modes on
the user interface.

Figure 9: The normal map of a
sphere.

incompatible environments. The second mode draws an impostor
sphere with Phong-esque shading. The details of this approach
were taken from QuteMol [9], a molecule rendering suite. The
process involves sending four vertices to the vertex shader at the
centre of the sphere. Each vertex's texture coordinates specify a
corner of a billboard, and once each vertex is transformed into
normalized device coordinates they are translated into their
respective corners of the screen-aligned square containing the
impostor sphere. In the fragment shader, pixels that fall outside
the radius of the imposter sphere are discarded, giving the
imposter a pixel-perfect circular boundary at all zoom levels
(figure 7). Normals for the sphere are easily calculated because
they can be solved given a pixel's distance to the impostor's centre
(figure 9).

Unlike QuteMol, the impostor rendered in this program is
actually a billboard (i.e. the depth of an actual sphere is not
computed). This has a few implications. First, sphere-sphere
intersections will appear as overlapping circles as opposed to
intersecting three-dimensional shapes. I felt this was appropriate
as the nodes are meant as data points and their actual geometry is
arbitrary. Second, the fragment shader becomes much shorter,
allowing for faster rendering. Third, the specular highlight

component of the Phong shading model is a bit inaccurate, as the
half-angle calculation requires the depth value at each pixel, hence
I refer to the lighting as Phong-esque. I felt the increase in speed
outweighs the disadvantages to using billboards for this type of
2D application, as the nodes themselves are simply meant to look
nice at all scales and the subtleties of their geometry are quite
insignificant.

The lines representing tree and non-tree edges as well as the
layout rings are drawn with simple line strips. Their colours were
selected to imply the tree edges (dark blue) are the most
important, followed by the non-tree edges (faded green), and
lastly the layout rings (light grey) which could have been omitted
altogether but were included to make the focus+context slider’s
effects apparent. The rings have two spacing modes, one linear
and one logarithmic, deemed the focus+context mode, as it allows
for much more space between the first few rings and diminishing
space between distant rings. The slider on the UI linearly
interpolates between these settings.

Nodes beyond the UI-specified sub tree clustering ring are not
drawn. Instead a line or triangle is placed at the node on the

Figure 10: Results of radial graph layout with sub tree clustering. Tree edges are drawn in blue, non-tree
edges in green, and the layout rings in grey. Clustering triangles are proportional to the sub trees they
represent, or are drawn as lines for simple node chains. The focus+context setting places the layout rings
logarithmically away from the centre, but nodes become clustered before getting too close together.

clustering ring and is meant to inform the user how large the sub
tree being hidden is relative to other hidden sub trees. If the sub
tree is a simple chain of nodes, a line is drawn instead. The size
of the triangle scales logarithmically with the span of the sub tree,
and transitions will very commonly combine two or more
clustered sub trees. A linear relationship between the span of the
sub tree and the triangle scale would result in very, very large
triangles that would be most certainly be partially occluded by the
window border and make visual comparisons impossible. The
style of these sub tree clusters was inspired by the triangular
previews of the SpaceTree [8] system (figure 11).

Despite the orthographic projection of the scene, the depth and
ordering of each object had to be chosen with care for proper
alpha blending. Clusters, nodes, and lines fade linearly between
the clustering ring and the first ring beyond it. Because the
velocity of anything transitioning between those two rings will
slow-in slow-out, the fading effect inherits this property
automatically.

7 RESULTS

The largest improvement to the radial graph layout technique is
the inclusion of sub tree clustering. Enabling the layout algorithm
to consider only nodes in a local neighbourhood at the focus, the
resulting graphs are no longer constrained to tiny slices of the
layout rings. I believe this removes the hurdle that unbalanced
tree-like sections imposed on the graph that made radial layouts
incapable of scaling to graphs of larger than a few dozen nodes.
Because the current layout is now local, the size of the underlying
graph becomes only a problem of computational graph-traversal
cost and not one of human perception.

While the the implementation of Yee et. al.'s solution without
further extensions could possibly scale to large graphs, they would
have to be well connected not contain any trees of more than a
dozen or so nodes or sub graphs connected to each other by only a
few edges. Those scenarios produce unbalanced trees during the
layout process making the focus region's layout consist of very
small angles between edges and edge lengths that span nearly the
diameter of one or more layout rings. Taking clustering into
account during the layout process relieves this focused tree
distortion and allows the graph size to be independent of the local
tree layout algorithm at the focus.

Going along with clustering, the intermediate node transitioning
allows for transitions of more than a few nodes at time without the
user becoming lost. For some data sets, the user may wish to
follow the path from one node to another via a third node. User-
specified paths would be an easy extension for an application that

supports a focus transition series. The rest of the additional
features aid the users ability to visualize graph exploration, the
central focus of Yee et. al.'s solution. The domain best suited for
this technique remains unchanged, being best for data which the
shortest path from one node to another is the most important path
and useful for the user to be able to visualize, leaving non-shortest
paths drawn only for the sake of context.

8 FUTURE WORK

I believe the biggest strength of this system is that it opens the
door to allow radial layout of arbitrary-sized graphs, simply by
making the layout algorithm local instead of global. Additionally,
navigation from one focus node to another is greatly improved
when the user is able to digest smaller steps as opposed to one
giant shift that may involve many nodes and sub trees changing
parents and moving great distances.

Despite the gains in dealing with trees or sparsely-connected
sub graphs that sub tree clustering enabled, it is still, in my
opinion, the biggest weakness of this approach. The user would
most likely want to view many rings at once, leaving the
clustering ring many jumps away, resulting in the layout
algorithm considering enough nodes to stumble into the same
problems I hoped to avoid by using clustering in the first place. In
the case of sparsely connected sub graphs, this is much less
pronounced, but in the case of trees, even a tree of only a couple
dozen nodes, becomes enough to really distort the graph structure
in the first few layout rings. A balance between a balanced tree
structure in the focus region and the ability to view nodes many
rings away must be set by the user specific to their data, I just
worry for some data sets this results in a focus region of too few
rings to get enough context for the region around the focus node
or enough rings for context but at the same time too many rings to
be considered by the layout algorithm to properly balance the
focus region tree.

As far as lessons learned, I have mixed feelings about
implementing the rendering and graph systems of this solution
from scratch. One one hand, reinventing the wheel can be fun at
times and the ability to tailor everything to my problem and avoid
sifting through mountains of documentation (or dare I mention the
horrors of finding bug work-arounds by searching community
message boards!) can be quite nice. On the other, time I spent
reimplementing existing graph code could have been spent adding
more features. Additionally, support for lots of small features and
file formats would most likely come for free had I started with a
publicly available graphing system.

If given more time to work on this project the first feature I
would have added would be to in some way highlight the path a
multi-jump transition is taking to better cue the user for changes
in direction. There are cases when jumping even a handful of
nodes at a time was simply too many and it became a lot of effort
to keep up with the animation sequence. Beyond that I would
have liked to try to branch out from traditional radial placement a
bit, perhaps trying to incorporate other graphing techniques like
curved edges or hyperbolic geometry that might have meshed well
with this particular problem domain.

REFERENCES

Figure 11: Screen shot found in [8] of the SpaceTree system. The
triangular previews were the primary inspiration for the sub tree
clustering triangles.

[1] Gebhardt, Nikolaus et al. Irrlicht: Lightning Fast Realtime 3D
Engine. http://irrlicht.sourceforge.net/

[2] Gebhardt, Nikolaus et al. IrrXML: High Speed Simple XML Parser.
www.ambiera.com/irrxml

[3] FLTK: Fast Light Toolkit. www.fltk.org

[4] Khronos Group, OpenGL. www.opengl.org

[5] John Lamping, Ramana Rao. The Hyperbolic Browser: A Focus
+Context Technique for Visualizing Large Hierarchies. Proc
SIGCHI 1995.

[6] Henry Maddocks. FTGL. http://ftgl.wiki.sourceforge.net

[7] Tamara Munzner. H3: Laying Out Large Directed Graphs in 3D
Hyprebolic Space. Proc InfoVis 1997.

[8] Catherine Plaisant, Jesse Grosjean, Ben B. Bederson. SpaceTree:
Supporting Exploration in Large Node Link Tree, Design Evolution
and Empirical Evaluation. Proc InfoVis 2002.

[9] Marco Tarini, Paolo Cignoni, Claudio Montani. Ambient Occlusion
and Edge Cueing to Enhance Real Time Molecular Visualization.
IEEE Transactions on Visualization and Computer Graphics Vol 12
No 5.

[10] Wills, NicheWorks – Interactive Visualization of Very Large Graphs.
Journal of Computational and Graphical Statistics, Vol 8 No 2.

[11] Jack J. van Wijk, Wim A. A. Nuij. Smooth and Efficient Zooming
and Panning. Proc InfoVis 2003.

[12] Ka-Ping Yee, Danyel Fisher, Rachna Dhamija, Marti Hearst.
Animated Exploration of Graphs with Radial Layout. Proc InfoVis
2001.

http://irrlicht.sourceforge.net/
http://ftgl.wiki.sourceforge.net/
http://www.opengl.org/
http://www.fltk.org/
http://www.ambiera.com/irrxml

	1Introduction
	2Previous Work
	3Description of Problem
	4Description of Solution
	5Third Party Software
	6Implementation Details
	7Results
	8Future Work

