Information Visualization

Lecture 1 CPSC 533C, Fall 2005

12 September 2005

Tamara Munzner

Course Home Page

permanent URL

www.cs.ubc.ca/~tmm/courses/cpsc533c-05-fall

shortcut

www.cs.ubc.ca/~tmm/courses/533

reload frequently, updates common!

Course Structure

first part

- professor lectures
- all do core readings

second part

- student presentations
- presenter does topic readings

requirements

- project: 50%
 proposal 10%, update 10%, report 20%,
 presentation 10%, content 50%
- presentation: 25%
- class participation: 22%
 questions 75%, discussion 25%
- · small assignment: 3%

Projects

choice 1: programming

- common case
- I will only consider supervising students who do programming projects

choice 2: analysis

- use existing tools on dataset
- detailed domain survey
- · suitable for non-CS students

stages

- meeting with me in person before proposal writeup
- proposal Nov 4
- update presentations Nov 16
- · final present Dec 19
- final report Dec 20

Presentations

second half of class

sign up by Oct 20

material (exact numbers TBD, depending on enrollment)

- · XX papers from my suggestions
- XX paper found on your own

talk

- chance to refine your public speaking skills
- slides required
- critical points of papers
- comparison and critique
- not just outline!

Participation

7%: discussions in class

both lectures and student presentations

15%: 5 questions on required readings

· due at 10am Mon/Wed for afternoon's reading

· if you can't attend: credit for email by 10am

Required Readings

Ware

Information Visualization: Perception for Design

2nd edition

Tufte Envisioning Information

many papers

- most are color PDF downloads from page
- · a few handed out in class as hardcopy

Reserve Books

- Information Visualization: Perception for Design, Colin Ware
- The Visual Display of Quantitative Information, Edward R. Tufte, Graphics Press 1983
- Envisioning Information, Edward R. Tufte, Graphics Press 1990
- Visual Explanations, Edward R. Tufte, Graphics Press 1997
- Readings in Information Visualization: Using Vision To Think; Card, Mackinlay, and Shneiderman, eds; Morgan Kaufmann 1999.
- The Visualization Toolkit, 2nd edition; Schroeder, Martin and Lorensen; Prentice Hall 1998

Course Design

reading-intensive course

- most of reading front-loaded in first 8 weeks oral presentations
 - · small assignment next class
 - major presentation
 - project update, project final

writing

- · questions, proposal, final report
- programming
 - project course (unless do analysis option)
 - · time management critical: staged development

no problem sets :) schedule

- two weeks during term with no classes
- run one week into final exam period

Information Visualization

visual representation of abstract data computer-generated, can be interactive

Interactivity

static images

- 10,000 years
- art, graphic design

moving images

- 100 years
- cinematography

interactive graphics

- 20 years
- computer graphics, human-computer interaction

Information Visualization

visual representation of abstract data

- · computer-generated, can be interactive
- · help human perform some task more effectively

Information Visualization

visual representation of abstract data

- · computer-generated, can be interactive
- · help human perform some task more effectively

bridging many fields

- · graphics: drawing in realtime
- cognitive psych: finding appropriate representation
- HCI: using task to guide design and evaluation

external representation

- reduces load on working memory
- offload cognition
- familiar example: multiplication/division

paper mental buffer

paper mental buffer

paper

mental buffer

$$[7*8=56]$$

paper

mental buffer

$$\begin{array}{r}
 5 \\
 57 \\
 \underline{x} \underline{48} \\
 \end{array}
 \qquad [5*8=40 + 5 = 45]$$

paper

mental buffer

$$[5*8=40+5=45]$$

paper

mental buffer

$$[7*4=28]$$

paper

mental buffer

$$[7*4=28]$$

paper

mental buffer

$$[5*4=20 + 2 = 22]$$

paper

$$[5*4=20 + 2 = 22]$$

paper

paper

$$[8+5=13]$$

paper

$$[8+5=13]$$

paper

$$[4+2+1=7]$$

paper

$$[4+2+1=7]$$

paper

Information Visualization

visual representation of abstract data

- · computer-generated, can be interactive
- · help human perform some task more effectively

bridging many fields

- · graphics: drawing in realtime
- cognitive psych: finding appropriate representation
- · HCI: using task to guide design and evaluation

external representation

- reduces load on working memory
- offload cognition
- · familiar example: multiplication/division
- · infovis example: topic graphs

External Representation: Topic Graphs

[Godel, Escher, Bach. Hofstadter 1979]

```
Paradoxes - Lewis Carroll
                                  Halting problem - Decision
Turing - Halting problem
                                  procedures
Halting problem - Infinity
                                  BlooP and FlooP - Al
Paradoxes - Infinity
                                  Halting problem - Unpredictably
                                  long searches
Infinity - Lewis Carroll
Infinity - Unpredictably long
                                  BlooP and FlooP - Unpredictably
searches
                                  long searches
                                  BlooP and FlooP - Recursion
Infinity - Recursion
Infinity – Zeno
                                  Tarski - Truth vs. provability
Infinity - Paradoxes
                                 Tarski – Epimenides
Lewis Carroll - Zeno
                                 Tarski - Undecidability
Lewis Carroll - Wordplay
                                  Paradoxes - Self-ref
```

External Representation: Topic Graphs

offload cognition to visual systems minimal attention to read answer

External Rep: Automatic Layout

manual: hours, days

[Godel, Escher, Bach. Hofstader 79]

automatic: seconds

InfoVis vs. SciVis

is spatialization given (scientific visualization) or chosen (information visualization)

my definition

names are unfortunate historical accidents

- not scivis iff data generated by scientists
- infovis not unscientific
- scivis not uninformative
- but too late to change

infovis: how to represent

- · choosing, doing, evaluating
- · huge space of possibilities: random walk ineffective
- need design guidelines

My Current Interests

domains

- evolutionary trees
- genomic sequences
- transaction logs
- environmental sustainability
- power grid control

techniques/projects

- accordion drawing
- multidimensional scaling
- scalable graph drawing
- evaluation

InfoVis Symposium organization

- · Program Co-Chair 2003, 2004
- · Posters Co-Chair 2001, 2002

Lecture Topics

Design Studies

Overviews/Context

Frameworks/Models

Color

Guest Lecturer: Maureen Stone

Perception

Space/Order

Depth/Occlusion

High Dimensionality

Interaction

Navigation/Zooming

Graphs/Trees

Evaluation

Guest Lecturer: Melanie Tory

Scientific Visualization

Guest Lecturer: Melanie Tory

More Guest Lectures

stayed tuned, things may shuffle

Assignment 1

find and critique two images

- one good visualization
- one bad visualization

make web page, send me URL by 10am Wed

- · pictures, two paragraphs for each
- · first par: story
- second par: specific critique accessability clarity accuracy other important design criteria
- · send to tmm@cs.ubc.ca

be prepared to concisely present in class < 5 min

Assignment 1

sources

- textbook
- · journal

Journal of Applied Optics, ...

science magazine

Nature, Science, Scientific American, ...

news magazine or newspaper
 Newsweek, Economist, NY Times, USA Today, ...

domains

- mathematics
- physical sciences astronomy, physics, chemistry, ...
- biological sciences ecology, medicine, bioinformatics, ...
- social sciences economics, crime statistics, ...