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Discussion

Common Scientific Problem Common Scientific Problem

* Make N observations * Make N observations

* Make a series of M measurements per * Make a series of M measurements per
observation observation

*+ NOW WHAT?

Visualization Problem: Hidden Factors

+ Directly Visualize Dimensions
— Parallel Coordinates

True Dimensionality < Measured Dimensionality

— Glyphs

— Star Coordinates

— Etc.




* Rotating head

» Large Number of Measured Dimensions

* Low Number of “Intrinsic” Dimensions

Problem

MANIFOLDS

What is a Manifold?

Solution: Dimensionality Reduction

 Find the true dimensionality

+ PCA - Find Largest Axes of Variability
And Construct a Plane !

+ MDS — Embed points based on Distances

What is a Manifold?

* A topological space that looks locally like
the Euclidean space R"

What is a Manifold?




What is a Manifold? What is a Manifold?

So What'’s the Problem? So What'’s the Problem?

Manifold Manifold

So What'’s the Problem? So What'’s the Problem?




So What'’s the Problem?

“Classic” Manifold Method:
ISOMAP

1. Link To Nearest
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So What'’s the Problem?

“Real” Distance

“Classic” Manifold Method:
ISOMAP

1. Link To Nearest
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“Classic” Manifold Method:
ISOMAP

1. Link To Nearest
Neighbors

2. Compute : s, Paper |: Charting a Manifold
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3. Perform MDS / _ Matthew Brand

Why Bother? What's Going On?

LV TN

+ Isomap depends on the integrity of the
local structure of the manifold

» Noise perturbs the structure leading to an
incorrect embedding.




What do we do about it? What do we do about it?
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R' Coordinate Frame
At each link

What do we do about it?
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What if we merged And weighted them
the similar frames? According to our
confidence?

Gaussian Mixture Model

Estimates Multimodal )} Estimates Multimodal
Sample Density Sample Density

Derive Coordinate Frame ..
From Eigenvectors
Of Distribution




Gaussian Mixture Model

These “Soft” Regions
Are our Charts

Semi-Invertable Transform

« A transformation to and from the manifold

Three principal degrees of freedom recovered from raw jittered images
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+ Interpolate on the manifold and
“backproject” to original sample space

Paper Il: Maximum Likelihood
Estimation of Intrinsic Dimension

Elizaveta Levina and Peter J. Bickel

Gaussian Mixture Model

Smooth Neighboring Chart
Alignments

Cross Entropy //
For <«
Neighbors

Critique

+ GOOD

— Elegant, robust idea solves shortcomings of former
methods

— Lots of novel examples to prove utility
— Backprojection provides visualization opportunities

+ BAD

— Little appeal to intuition
— No Code

— Runtimes? How does it scale?

How many eigenvectors?

We use only the largest D
where

D = Intrinsic Dimensionality




How do we get D? Geometric Methods

C(r) = average number of points in radius r
« Most often = User makes a guess for each point in dataset
Plot log(C(r)) against log(r)
« Use an estimation method * D = slope )

— Projection Methods (PCA, local PCA)

— Geometric Methods




Why? Why?

C(r) grows like x C(r) grows like x
o0 000 000000000000000000000 o0 000 0000000000000000600000

Log(x)/log(x) = 1




C(r) grows like x2

Log(x®)/log(x) = 2

Issues

* We don’t know the effect of
— Sample Size
— Dimension

» We also don’t understand bias or variance

Step 1: Define the Process

* N(t,x) = number of points in a sphere of
radius t around point x

+ We approximate this with a Poisson
process

 The rate of this process depends on D!

This is called the correlation
dimension

How well does this work?

Strategy of Paper Il

Define a stochastic process to model
observations in sphere for some low
dimensional density.

Define a MLE for the dimension parameter
of the process.

Examine statistical properties of the
estimator.

Step 2: Define the MLE

MLEs infer values of parameters of
underlying process.

Build an MLE for D

Average over all points
Average over a range of k
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Step 3: Discuss Properties of MLE

» Expected value of MLE =D

« Variance = D?/(k-3)

» These are asymptotic for k and sample
size

Dimension estimate m,

-3 n=2000
= n=1000
5~ n=500
-©- n=100

MLE of dimension
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Critique

+ GOOD

— Provides a well-defined tool for estimating
dimensionality
— Suitable for dimensions appropriate for visualizing

 BAD
— Written by Statisticians
— Absolutely no appeal to intuition
— No geometric description of Estimator!

Estimated dimension
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True dimension




Questions?
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