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High Dimensionality I

Manifold Methods

Talk Overview

• Define Concepts and Problems

• Paper I: Charting A Manifold by Matthew Brand

• Paper 2: Maximum Likelihood Estimation of 
Intrinsic Dimension by Elizaveta Levina and 
Peter J. Bickel

• Discussion

Common Scientific Problem

• Make N observations

• Make a series of M measurements per 
observation

Common Scientific Problem

• Make N observations

• Make a series of M measurements per 
observation

• NOW WHAT?

Visualization

• Directly Visualize Dimensions

– Parallel Coordinates

– Glyphs

– Star Coordinates

– Etc.

Problem:  Hidden Factors

True Dimensionality < Measured Dimensionality
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Example

• Rotating head

• Large Number of Measured Dimensions

• Low Number of “Intrinsic” Dimensions

Solution:  Dimensionality Reduction

• Find the true dimensionality
• PCA – Find Largest Axes of Variability 

And Construct a Plane

• MDS – Embed points based on Distances

Problem

MANIFOLDS

What is a Manifold?

• A topological space that looks locally like 
the Euclidean space Rn

What is a Manifold? What is a Manifold?
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What is a Manifold? What is a Manifold?

So What’s the Problem?

Manifold

So What’s the Problem?

Manifold

So What’s the Problem?

PCA

So What’s the Problem?

PCA
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So What’s the Problem?

MDS

Euclidean Distance

So What’s the Problem?

MDS

“Real” Distance

“Classic” Manifold Method: 
ISOMAP

1. Link To Nearest 
Neighbors
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Distances 
THROUGH Graph
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“Classic” Manifold Method: 
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“Classic” Manifold Method: 
ISOMAP

1. Link To Nearest 
Neighbors

2. Compute 
Distances 
THROUGH Graph

“Classic” Manifold Method: 
ISOMAP

1. Link To Nearest 
Neighbors

2. Compute 
Distances 
THROUGH Graph

3. Perform MDS

Paper I: Charting a Manifold

Matthew Brand

Why Bother? What’s Going On?

• Isomap depends on the integrity of the 
local structure of the manifold

• Noise perturbs the structure leading to an 
incorrect embedding.
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What do we do about it? What do we do about it?

R1 Coordinate Frame
At each link

What do we do about it?

What if we merged 
the similar frames?

What do we do about it?

And weighted them
According to our 
confidence?

Gaussian Mixture Model

Estimates Multimodal 
Sample Density

Gaussian Mixture Model

Estimates Multimodal 
Sample Density

Derive Coordinate Frame 
From Eigenvectors
Of Distribution
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Gaussian Mixture Model

These “Soft” Regions
Are our Charts

Gaussian Mixture Model

Smooth Neighboring Chart
Alignments

Cross Entropy
For 
Neighbors

Semi-Invertable Transform

• A transformation to and from the manifold

• Interpolate on the manifold and 
“backproject” to original sample space

Critique

• GOOD
– Elegant, robust idea solves shortcomings of former 

methods
– Lots of novel examples to prove utility
– Backprojection provides visualization opportunities

• BAD
– Little appeal to intuition
– No Code
– Runtimes?  How does it scale?

Paper II: Maximum Likelihood 
Estimation of Intrinsic Dimension

Elizaveta Levina and Peter J. Bickel

How many eigenvectors?

We use only  the largest D 
where 
D = Intrinsic Dimensionality
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How do we get D?

• Most often = User makes a guess

• Use an estimation method

– Projection Methods (PCA, local PCA)

– Geometric Methods

Geometric Methods

• C(r) = average number of points in radius r
for each point in dataset

• Plot log(C(r)) against log(r)
• D = slope

Why? Why?

Why? Why?
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Why?

C(r) grows like x

Why?

C(r) grows like x

Log(x)/log(x) = 1
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C(r) grows like x2

Log(x2)/log(x) = 2

This is called the correlation 
dimension

How well does this work?

Issues

• We don’t know the effect of

– Sample Size

– Dimension

• We also don’t understand bias or variance

Strategy of Paper II

• Define a stochastic process to model 
observations in sphere for some low 
dimensional density.

• Define a MLE for the dimension parameter 
of the process.

• Examine statistical properties of the 
estimator.

Step 1:  Define the Process

• N(t,x) = number of points in a sphere of 
radius t around point x

• We approximate this with a Poisson 
process

• The rate of this process depends on D!

Step 2:  Define the MLE

• MLEs infer values of parameters of 
underlying process.

• Build an MLE for D

• Average over all points
• Average over a range of k
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Step 3:  Discuss Properties of MLE

• Expected value of MLE = D

• Variance = D2/(k-3)

• These are asymptotic for k and sample 
size

Results

Results Results

Results Critique

• GOOD
– Provides a well-defined tool for estimating 

dimensionality
– Suitable for dimensions appropriate for visualizing

• BAD
– Written by Statisticians
– Absolutely no appeal to intuition
– No geometric description of Estimator!
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Questions?


