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F. Jourdan and G. Melangon. Multiscale
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well written, clear, appropriately detailed
High-dim and MDS can be complicated

Dimensionality reduction

Mapping high-dimensional data to 2D space
Could be done many different ways
Different techniques satisfy different goals

Familiar example - projection of 3D to 2D
preserves geometric relationships

Abstract data may not need that

Morison, Ross, Chalmers

Multidimensional scaling (MDS)

Display multivariate abstract point data in 2D

o Data from bioinformatics, financial sector, etc.

o No inherent mapping in 2D space

o p-dim embedding of g-dim space (p < g) where inter-object
relationships are approximated in low-dimensional space

Proximity in high-D -> proximity in 2D

o High-dim distance between points (similarity) determines
relative (x,y) position

o Absolute (x,y) positions are not meaningful

Clusters show closely associated points

Multidimensional scaling (MDS)

Eigenvector analysis of N x N matrix — O(N?)
o Need to recompute if data changes slightly
lterative O(N?) algorithm — Chalmers,1996
This paper — o(N+/N)

Next paper — O(N log N)

Multidimensional scaling (MDS)

Proximity data

o In social sciences, geology, archaeology, etc.

a E.g. library catalogue query — find similar points
Multi-dimensional scatterplot not possible

o Want to see clusters, curves, etc.
Features that stand out from the noise

Distance function

a Typically use Euclidean distance — intuitive




Spring models

Used instead of statistical techniques (PCA)
o Better convergence to optimal solution

o lterative — steerable — Munzner et al, 2004
Good aesthetic results — symmetry, edge
lengths

Basic algorithm — O(N\°)

o Start: place points randomly in 2D space

o Springs reflect diff btwn high-D and 2D distance
o #iterations required is generally O(N)

Chalmers’ 1996 algorithm

Approximate solution works well

Caching, stochastic sampling — O(N?)

a Perform each iteration in O(N) instead of O(N?)

o Keep constant-size set of neighbours

o Constants as low as 5 worked well

Still only worked on datasets up to few 1000s

Hybrid methods of clustering and layout

Diff clustering algorithms have diff strengths
o Kohonen'’s self-organising feature maps (SOM)
o K-means iterative centroid-based divisive alg.
Hybrid methods have produced benefits
Neural networks, machine learning literature

New hybrid MDS approach

Start: run spring model on subset of size VN
a2 Completes in O(N) (OGN \/N))

For each remaining point:

a Place close to closest ‘anchor’

o Adjust by adding spring forces to other anchors
Overall complexity O(Ny/N)

Experimental results

3-D data sets: 5000 — 50,000 points

13-D data sets: 2000 — 24,000 points

Took less than 1/3 the time of the O(N?)
Achieved lower stress when done

Also compared against original O(N?) model

o 9 seconds vs. 577; and 24 vs. 3642
a Achieved much lower stress (0.06 vs. 0.2)

Experimental results




Future work

Hashing

Pivots — Morrison, Chalmers, 2003

4 Achieved O(NY/N)

Dynamically resizing anchor set

Proximity grid

o Do MDS, then transform continuous layout into
discrete topology

Jourdan and Melangon

Multiscale hybrid MDS

Extension of previous paper

Achieves O(N log N) time complexity
Good introduction of Chalmers et al papers

Like Chalmers, begins by embedding subset
Sofsize VN

Improving parent-finding strategy

Select constant-size subset Pc S
For each pin P create sorted list L,

For each remaining point u, binary search L,
for point u, as distant from p as v is

a Implies that u and u, are very close

Place u according to location of u,

Comparison

Figuro 3. Camparison of the N4 and og N
curvea on the sesle 10° - 167,

Chalmers et al is better for N < 5500
Main diff is in parent-finding, represented by Fig. 3

Comparison
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Figure

Experimental study confirms theoretical results
This technique becomes better for N > 70,000

Quality of output
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Figure 6. Small workl network indueced from
randormly selected points in2D (300 nade ci- Figuro 7. MDS ouput obtsined from the not-
work in Figure .

MDS theory uses stress to objectively determine
quality of placement of points

Subjective determinations can be made too

o 2D small world network example (500 — 80,000 nodes)




Multiscale MDS

Figum 3. Campor
DS algoritema coraier

Figure 9. Camparison of the sctual running
curvo 3 the botiom opar s time for allfour MDS algorithms consisred
Tonched by the sl HDS. here.

Recursively defining the initial kernel set of points
can yield much better real-time performance

Conclusions and future work

Series of results yielding progressively better
time complexities for MDS

2D mappings provide good representations
Further examination of multiscale approach
User-steerable MDS could be fruitful




