
 1

BrowsingViz: Visualizing Web Browsing Behaviours for HCI Research
J. Karen Parker

University of British Columbia
201-2366 Main Mall

Vancouver BC Canada V6T 1Z4
parker@cs.ubc.ca

ABSTRACT

This paper introduces BrowsingViz: visualization software

developed for an HCI researchers’ dataset of web browsing logs.

Analyzing such a dataset - which combines automatically logged

data with user-provided qualitative information – can be a

daunting task. Using an iterative, participatory design approach

we developed software that uses established InfoVis techniques

such as colour and spatial layout to simplify the task of analysis.

BrowsingViz provides two layout options for the data

(compressed and temporal), which allow the end user to both see

patterns and gain an overall understanding of the dataset.

Additional utilities such as tool tips provide the user with a rich

array of information for each data point. We believe our software

is an effective tool for the analysis of this dataset and stands up

well to several scenarios of usage. Furthermore, the techniques

used in BrowsingViz could also be effectively applied to other

similar research data.

CR Categories and Subject Descriptors:
Additional Keywords:

1 INTRODUCTION

In HCI, data analysis can be a complex task. Researchers often

use a combination of logging and qualitative methods to record

data, resulting in a daunting amount of information which must be

sifted through in order to do a thorough analysis.

This data overload is a common problem, as evidenced by a

recent workshop at CHI 2005, which aimed to tackle the problems

associated with combining data logging and qualitative methods

[8]. Kort and de Poot identified several key tasks that are difficult

to achieve with existing data analysis solutions: detecting patterns

in behaviour, comparing patterns between users, and combining

patterns in behaviour with qualitative data [workshop ref].

Hilbert and Redmiles suggest, among other things,

“[visualizing] the results of transformations and analyses of event

streams so they can be explored with more ease” [4]. So, some

form of information visualization may be able to aid HCI

researchers in their data analysis problems.

Unfortunately, in trying to create a visualization solution that is

good for everybody, we may end up with a solution that suits

nobody terribly well. In an attempt to avoid this pitfall we take a

somewhat narrow approach to visualizing HCI log data, focusing

solely on the visualization of web browsing behaviour.

To this end, we propose BrowsingViz, a software visualization

tool to aid in the analysis of web browsing behaviour. Through

established InfoVis techniques such as the use of colour and

spatial positioning, and features such as tool tips and flexible

display settings, BrowsingViz effectively aggregates and displays

our target dataset.

This organization of this paper is as follows: First, we present

related work in the area of our problem domain, as well several

areas of related InfoVis research; Then, we describe the

BrowsingViz system, including the dataset, implementation

details and InfoVis techniques used; This is followed by our

results, which cover scenarios of use, performance, and

evaluation; Then, we discuss the lessons we learned through the

BrowsingViz development process, and touch on several strengths

and weaknesses of our software; Finally, we present our

conclusions and plans for future work.

2 RELATED WORK

2.1 Problem domain

Recent research into web browsing has begun to examine user

behaviour at a much deeper level than simple navigation. In

particular, several researchers at Dalhousie University are

conducting examining web browsing behaviour by logging low-

level browser events in order to gain information about users’ web

browsing habits [3,7]. By combining browser events with user-

provided data (e.g. the task a user was trying to accomplish when

they were at a particular page), these researchers hope to reveal

interesting trends and patterns in web browsing behaviour.

BrowsingViz is designed specifically to visualize data from one

of these researchers’ studies: Hawkey’s “Privacy Gradients for

Web Browsing.” (Figure 1)

Figure 1. Privacy Gradients for Web Browsing: An overview.

2.2 Web browsing visualization

Most previous InfoVis research into web browsing has been

concerned primarily with mapping users’ navigation through

individual websites. The main aims of this type of visualization

 2

include improving website usability [5], and characterizing how

users navigate complex information spaces [1].

Berendt and Brenstein offer STRATDYN, an analysis tool for

providing meaningful qualitative and quantitative data about

users’ web browsing behaviours on a specific site [1]. Rather than

being concerned with the bigger picture of a user’s browsing

behaviour, the authors present STRATDYN as a server-side tool

for drawing maps of users’ navigation through a web site’s pages

[1]. These maps can then be used to identify and categorize

sequences of movements that are important in characterizing web

navigation. The authors were able to use the STRATDYN tool to

analyze data from a study that looked at the effect of attention on

navigation performance [1].

Hong and Landay’s WebQuilt [5] also visualizes web browsing

behaviours, but for the purposes of usability testing, rather than

research data analysis. Again, the focus is on navigation paths

through the website, rather than the attributes of the pages being

visited. Meant as a usability tool for website designers, WebQuilt

is very path-centric, mapping common user paths through a site, a

well as optimal oaths [5].

In contrast to this previous work in web browsing visualization,

which takes a server- or page-centric view of a user’s navigation,

we are interested in a user’s whole browsing experience, not their

path of navigation over specific web pages or servers.

2.3 Log Data Visualization

Previous work in visualizing complex systems may provide

some insight into the HCI log data problem. Bosch et al. state that

“because of the complexity of computer systems, the analysis

process is a highly unpredictable and iterative one: an initial look

at the data often ends up raising more questions than it answers”

[2]. The authors’ approach to this problem is to create a tool that

is as flexible and customizable as possible. The result – Rivet – is

able to handle a variety of computer system data [2].

While a highly flexible, customizable interface for visualizing

similar-but-different data is a noble goal, it places a lot of the

work on the shoulders of the end user, who must spend a great

deal of time customizing the tool to their dataset. In this paper we

take the opposite approach to visualizing web-browsing behaviour

by choosing to support only a very specific dataset. While this

limits our software’s applicability to other, similar, types of data,

it also makes BrowsingViz highly useful for our single target end

user.

3 BROWSINGVIZ

3.1 Dataset

Our dataset consists of two groups of individual files from a

user study that investigated issues of privacy surrounding web

browsing behaviour. Each participant in the study had his or her

web browsing behaviour logged for one week. During this time,

two data files were generated: browsing log and browser events.

3.1.1 Browsing log file

This file contains a list of every single page the participant

visited during the one-week study period. For each page, the

following information is present (representing one line of data):

WindowID unique ID for the browser window

Date day, month, and year

Time time of day

Page Title title of the web page

URL address of the web page

Privacy Level user-defined privacy level (4 possible)

Location user’s location (e.g. school/work/home)

Category user-defined category

Other secondary category

Secure whether or not the page was secure (https)

3.1.2 Browser events file

This file contains a list of captured web browser events. These

events occur during the same time span as the browsing log file,

but are not associated with specific web pages:

WindowID unique ID for the browser window

Date day, month, and year

Time time of day

Event four types:

- window opened

- window closed

- window lost focus

- window gained focus

- page loaded

- navigation started

3.2 Implementation details

Our software was built in Eclipse 3.1.1 for OS X with Java

1.4.2. We made heavy use of the Swing libraries and also took

advantage of two third-party libraries: OsterMiller[9] provided a

suite of classes to parse our CSV data files, and Joda-Time[6]

offered a very usable alternative to Sun’s horrid date and time

implementation. With the exception of the aforementioned

libraries, we wrote the entire application. We did not use any

InfoVis toolkits.

Cross-platform compatibility is a major concern for us, since

our target end user runs Windows. Our software has been tested

on Eclipse 3.1.1 for Windows XP, and runs well.

3.3 InfoVis techniques

3.3.1 Colour

Ware tells us that colour “is excellent for labelling and

categorization” [10]. We take this to heart in BrowsingViz, using

colour as one of the primary methods for identifying attributes of

our data. We use for two primary purposes: to display privacy

levels, and to display page categories.

Privacy levels

Colour blindness is an important consideration in selecting

colours for visualization applications [10], however in the case of

our software this was not a priority. We had a very specific target

end-user who already has a set of colours associated with the

dataset. Each page in the dataset has an associated privacy level

which maps to one of four colours:

Privacy Level Colour

Public Green

Semi-Public Yellow

Private Red

Don’t Save Blue

 3

Since our end user already had strong associations between the

data and these colours, we chose to mirror these mappings in our

software (Figure 2).

Figure 2. End user s original data colour mappings in use

Categories

In addition to its privacy level, each page in our dataset is

labelled with at least one category. Some pages also have an

additional category field called “other.” Each data file defines its

own categories, so it is impossible for us to define a global

category colour scheme. Furthermore, some files define upwards

of 20 different categories. Automatically assigning this many

colours is difficult not only in terms of coming up with

distinguishable hues, but would also require a huge amount of

cognitive effort on the part of our user – even with a legend for

reference - when she wanted to figure out which colour mapped to

a specific category.

Instead, our approach is to put the colour assignment in the

hands of the end user. When a data file is loaded, we assign the

same default colour (black) to every category. The user can then

use the settings panel to modify as many of these category-colour

mappings as she wishes to. (Figure 3)

Figure 3. End user controls display colours for categories.

This is useful because the end user can choose colour mappings

that are meaningful to her. It also makes it easy to visually

“collapse” categories. For example, if our end user wanted to

group the Computers/Internet and Email categories in the figure

above, she could simply set the same colour for both categories.

3.3.2 Spatial position

At first glance, the temporal nature of our dataset seems to

easily lend itself to a time-series visualization. However, we have

found that a slightly different type of layout is also quite useful.

Our software implements two layouts: temporal and compressed.

Temporal layout

The temporal layout shows a user’s browsing behaviour over

time (Figure 4). Each browser window is drawn on a separate line

of the Y-axis. Each individual page is represented by a rectangle

that is proportional in length to the amount of time it was open in

a browser window. The location of each page is mapped along the

X-axis (time).

Figure 4. Temporal layout

However, the nature of the web browsing data presents some

problems with this arrangement. Each data file spans a week and

some pages only span a few seconds. If we represent each second

as a single pixel on the X-axis we end up with an extremely large

visualization spanning hundreds of screens-lengths. While this

provides a realistic picture of the data over time, it is impossible

for our end user to see more than a few minutes’ worth of

browsing behaviour at a time.

Compressed layout

To address the problems presented by our temporal layout, we

introduced the compressed layout (Figure 5). Each page in the

compressed layout is of equal width, regardless of the length of

time it represents. The Y-axis of unique browser windows

remains, but pages are no longer mapped to time on the X-axis;

instead, they are simply placed one after the other in the order

they appeared in the browser window.

Figure 5. Compressed layout

Unlike the temporal layout, which spaces data far apart and

makes some individual pages too narrow to see, the compressed

layout gives each page enough screen real estate to easily be seen

by the end user. It also lines the browser windows up in a vertical

row so that they may be easily compared.

 4

3.3.3 Navigation and zooming

We originally envisioned an interactive zooming feature for our

application. Users would be able to drag and select a portion of

the time-series, and the display would zoom horizontally,

displaying only the selected data. However, limits on our time and

programming knowledge resulted in this feature not being

implemented in the current version of the BrowsingViz software.

Instead, navigation is currently handled with horizontal and

vertical scrollbars. If the visualization is larger than the available

display space, the user can scroll vertically to see additional

browser windows, and horizontally to see additional pages.

We considered displaying multiple browser windows on one

line to help alleviate the need for vertical scrolling, however our

end user adamantly prefers individual lines for each window

because it is easy to make comparisons between individual

windows this way.

We hope to improve on the navigation and zooming capabilities

of our software in the future, perhaps even offering a

Focus+Context interaction technique.

3.3.4 Additional features

In addition to the InfoVis techniques discussed above, out

software has several other useful features. These include: page

break markers to delineate transitions between pages; category

visualization bars to provide a secondary visual piece of

information; tool tips to provide rich textual data for each page;

and behind-the-scenes aggregation of previously disconnected

data.

Page break markers

If multiple pages with the same privacy level appear beside

each other, it is difficult to tell where one page ends and another

begins. In order to make it easier for the user to discern page

transitions, we provide the ability to turn visual “page breaks” on

or off. (Figure 6)

Figure 6. Compressed layout with page break markers

With page breaks turned on, the user can instantly tell where page

changes occur in a bar of browser window data.

Category visualization bars

The main aim of our visualization is to display the privacy level

of each page, but the user may sometimes want to see additional

visual information such as a page’s category. Our software allows

the user to turn two additional display bars on and off: one for the

primary category, and one for the “other” category. With these

bars turned on, and colours assigned for specific categories, the

user can explore relationships between a page’s privacy level and

some of its other attributes.

Tool tips

The large amount of data available for each individual page is

impossible to display persistently as part of the visualization. In

order to give the user access to all of this data we have

implemented tool tips. Whenever a user’s cursor enters a page on

the display, a tool tip will appear. A standard UI tool tip

disappears after a short amount of time, but our tool tips persist

until the user’s cursor exits the bounds of a particular page. These

tool tips allow us to provide the user with a rich array of data for

each page without overwhelming the display with information

(Figure 7).

Figure 7. Sample tool tip

Data aggregation

As described in section 3.1, our dataset contains two sets of

files: browsing log files, and events files. The events file contains

information that could be very relevant to the browsing log file.

Prior to the development of BrowsingViz our end user had no

useful way of combining these two files. Our software aggregates

the information from both files, providing additional context to

the data.

The browsing log file specifies when each page was opened,

but not when it was exited or closed. If we sort the list of pages in

each browser window chronologically we can deduce that the exit

time for each page is the same as the open time for the next

(chronological) page. However, this method fails when we reach

the last page in the window. We have no idea when this page was

closed. Luckily, out events file contains close events for each

browser window. This gives us the exit time for our final page.

The focus information from the events file could be used to

provide heightened context for our data. Though not currently

implemented in the software, we could imagine providing visual

cues on the timeline showing which window currently has focus.

Thus, aggregating the browsing log and events file provides us

with more information about page exit times, and could provide

other even more useful contextual information if further event-

centred features were implemented.

4 RESULTS

4.1 Scenarios of use

Although our dataset is very specific, our intended end user has

several tasks she’d like to accomplish with our software. We

outline three examples of this below.

4.1.1 Scenario 1: Looking for privacy level patterns in
browser windows

Before she had our visualization tool, one of the patterns our

end user was able to glean from her dataset was that users often

browse long runs of one privacy level in the same browser

window, and use a different window for browsing pages of

another privacy level. She has just collected data from a new

participant and wants to quickly see if this is the case for their

data as well. She opens the data file in our visualization tool, and

adjusts the settings so that only the privacy bar is visible, and the

layout is compressed rather than temporal.

 5

She then switches to the visualization panel and scrolls

vertically through the visualization until she spots a run of pages

that is almost completely green, except for one anomalous red

block in the middle. She moves her cursor over the mouse to get

more information about the anomalous page (Figure 8).

Figure 8. Looking for privacy level patterns in web browser
windows. A larger version of this figure is available on page 8.

4.1.2 Scenario 2: Examining the interaction between a page’s
privacy level and its category

Because each participant’s log file has a different set of

categories, examining anything related to these categories can be a

tedious job. Using our software, the end user wants to be able to

examine how different categories match up with privacy levels.

She opens the data file in BrowsingViz, makes sure the

category visualization bar is turned on and then examines the list

of categories on the settings panel. The categories start out

uniformly colour-coded to black.

She wants to see whether the participant tended to label Health-

related sites as private, so she sets the Health category colour to

teal. She also decides that e-mail and chat/instant messaging are

similar and she wants to collapse them into one category, so she

colours them both purple (Figure 9).

Figure 9. Adjusting category bar colours on the settings tab. A
larger version of this figure is available on page 8.

She switches to the visualization panel and scrolls through the

information, looking for blocks of purple or teal in the category

bars. This allows her to make interesting observations, such as the

fact that this user generally marks all email and chat browsing as

private. (Figure 10)

Figure 10. Looking for relationships between privacy level and
category using coloured bar visualizations. A larger version of this
figure is available on page 9.

4.1.3 Scenario 3: Exploring a participant’s web browsing
behaviour over time

While the compressed layout has been useful for a variety of

data examination tasks, our user now wants to form a general

impression of when a particular participant does their private

browsing. For example, do they mostly browse private pages late

at night?

She opens the data file in BrowsingViz and adjusts the settings

so that only the privacy bar is visible, and the layout is temporal.

She switches to the visualization panel and scrolls through the

information, looking for large blocks of red (private) pages. When

she finds one, she moves her mouse over it to bring up a tool tip

that shows her the date and time for that data, among other

information. (Figure 11)

Figure 11. Exploring a participant s web browsing behaviour over
time. A larger version of this figure is available on page 9.

 6

4.2 Performance

One of the obvious bottlenecks for any InfoVis application is

the reading and parsing of data. At a couple-thousand lines of

comma-separated text per file, the data files our software uses are

relatively small. Since our application only deals with one file at a

time, it is easily able to read in and parse the data with very little

delay.

Another possible cause of lag in InfoVis applications is

rendering. Again, since our dataset is relatively small (compared

to those which use hundreds of thousands of data points) this is

not a major problem for our software. While some parts of the

BrowsingViz interface are currently a bit sluggish to redraw, we

believe this to be a symptom of the preliminary nature of our

application code. We are confident that this will be remedied once

we have had some time to optimize the UI code.

4.3 Evaluation

While we did not perform any formal user evaluations on our

software, we followed a continuous cycle of iterative,

participatory design with our end user, who was heavily involved

in design decisions throughout the development process.

In the early stages she provided us with information about tasks

she wanted to accomplish with the data. She also joined us in a

low-tech prototyping session in which we used whiteboard

sketches to generate ideas for the BrowsingViz interface.

As development progressed, we polled her regarding the

interface design and the importance of certain features. Her

feedback was invaluable, and we expect to continue to iterate with

her in the future as we continue to develop the project.

5 DISCUSSION

5.1 Lessons learned

The development process of BrowsingViz was the first time we

had ever built such an interface- and interaction-heavy piece of

software, and it was a learning experience. Two lessons, in

particular, stand out:

5.1.1 Simple visualizations are not always simple to
implement.

If something looks simple and intuitive, someone probably

spent a lot of time making it look that way! Since we decided not

to build on any existing InfoVis toolkits, a great deal of work

went into creating the visualizations and interactions for

BrowsingViz. We were not able to complete all the features we

had originally planned, and had particular trouble with the

temporal layout, as well as the navigation and zooming

functionality. In the future, we wouldn’t be so quick to rule out

toolkits.

5.1.2 Users don’t always know what they want

This is not meant as an insult to our end user. Rather, it is a

caution that you cannot expect to ask a user what they want in an

application, go away and build it, and come back and present

them with a finished product. The iterative, participatory

development process was key to the success of our design because

we were able to alter our plans based on frequent feedback from

our end user. Often, we tried several different approaches to a

particular issue before hitting upon one that resonated. Without

the iterative approach, we may never have reached such

resonations.

5.2 Strengths

While there are plenty of improvements that could be made to

our software, we believe that the current version of BrowsingViz

does several things quite well.

5.2.1 Use of existing dataset attributes

The software takes existing attributes of the dataset and uses

them effectively in visualizations. In particular, the colour codes

associated with the privacy levels in the dataset are put to good

use, as is the chronological nature of the data.

The privacy colour codes defined by our user translate well to

the bar visualization format. Our user is able to glean the privacy

level of pages in our visualization instantly primarily because this

set of colours is so deeply ingrained in her mind.

Additionally, the chronological information implicit in our

dataset makes for an easy-to-understand spatial layout. Even in

the non-temporal, compressed BrowsingViz layout we use

information about the chronological order of pages to determine

order on the screen. This juxtaposes pages that were visited

sequentially and allows our use to spot temporal patterns.

5.2.2 Recognizing patterns and overviews

As hinted at in the previous section, the visualizations we have

created allow the user to accomplish two important tasks: spotting

patterns in the data, and forming an overall impression of the data.

The use of coloured bars allows the user to see, at a glance,

patterns and anomalies in the dataset. In the temporal view, these

bars are mapped over time, allowing the user to look for patterns

not only in colour-coded information such as privacy level and

category, but in temporal attributes such as time of day and length

of page visits.

The two layouts (compressed and temporal) also offer unique

overviews of the data. The temporal layout allows a user to form

an impression of a users’ browsing behaviour over time, but

requires a lot of scrolling on the part of the user. The compressed

layout minimizes the need to scroll, and while it loses much

temporal information, it shows the ordering of pages in each

browser window, thus preserving some basic information about

chronology.

5.2.3 Data aggregation

Finally, we have successfully aggregated two related – but

previously separate - data sets: page visit data and browser event

data. Prior to our work on this, the user was not able to effectively

use the data from the event files. Now, our visualization uses the

event data to refine details about page length. And in the future,

we expect to more fully take advantage of the event data by

displaying important events on the timeline.

5.3 Weaknesses

BrowsingViz is a work in progress, and there are several major

improvements that must be made before it can reach its full

potential. In particular, we need to work on the navigation and

zooming functionality, the juxtaposition of the settings and the

visualization, and the applicability of our software to other

datasets.

5.3.1 Navigation and zooming

A week’s worth of web browsing behaviour is a whole lot of

web pages, and when representing that data on a timeline scaling

is an issue. Some pages are visited for mere seconds, so trying to

make every page on a weeklong timeline visible is problematic.

BrowsingViz handles this poorly. It generates extremely large

 7

timeline visualizations and requires the user to scroll through

them in order to see all of the data. Additionally, if there are long

time gaps between browsing sessions, the user may find herself

staring at an empty screen at some point, with little contextual

information to fall back on for help. In future versions of the

software we hope to tackle this problem with a focus+context

approach, allowing the user to see a week’s worth of browsing

history on the screen while zooming in on specific section of the

timeline to reveal further details.

5.3.2 Juxtaposition of visualization and settings

In an attempt to maximize the screen real estate available for

our visualization, we ended up putting all of the settings on a

separate tab. While this leaves us lots of space for displaying the

visualization, it also means that the user must switch to the

settings tab every time she wants to modify the display, and then

switch back to the visualization tab after making the desired

modifications. This lack of tight visual coupling between settings

and visualization makes it difficult for the user to see the effect

her settings changes have on the visualization. One possible

solution to this problem would be a pop-up settings window. This

might occlude part of the visualization, but only temporarily.

5.3.3 Dataset limitations

Currently, BrowsingViz is designed to work with the very

specific dataset made available to us by our end user. However,

there are other HCI researchers doing similar work in the area of

web browsing, with similar datasets to analyze. We believe that

these researchers could also benefit from the types of

visualizations our software provides. While the software could be

easily hard coded with the characteristics of some other dataset,

overall flexibility of use is a far superior goal. In the future we

hope to be able to extend our software to give users more control

over the types of data that can dealt with, and the ways in which it

can be displayed.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have presented BrowsingViz, a visualization

tool built specifically to aid a researcher’s analysis of logged web

browsing behaviour. The preliminary version of our software

accomplishes our goals of allowing the user to find patterns, and

to gain a better overall understanding of the data.

The current version of BrowsingViz is fairly preliminary, and

there are several additional and improvements that would make it

an ever better tool. We plan to make several modifications to the

temporal layout, including adding a focus+context zooming

technique to improve the visibility of data, and integrating focus

events from the event data file onto the display in order to provide

our user with a fuller picture of participants’ browsing behaviours.

Going beyond out current limited dataset, we hope to extend

our software to work with other, similar datasets. In particular, we

plan to support the work of another researcher at Dalhousie who is

studying the implications of task on web browsing behaviour [7].

Our eventual goal with BrowsingViz is to make it flexible enough

to be used by anyone who is studying logs of web browsing

behaviour.

7 ACKNOWLEDGEMENTS

We would like to thank Kirstie Hawkey for providing us with

the dataset for this project, and for her insightful comments and

suggestions during our iterative design process.

REFERENCES

[1] Berendt, B. & Brenstein, E. (2001). Visualizing Individual

Differences in Web Navigation: STRATDYN, a Tool for Analyzing

Navigation Patterns. In Behavior Research Methods, Instruments, &

Computers, 33, pp. 243-257.

[2] Bosch, C.S. et al. (2000). “Rivet: A Flexible Environment for

Computer Systems Visualization.” In Computer Graphics, February

2000, pp. 68-73.

[3] Hawkey, K. and Inkpen, K.M. (2005). Privacy gradients: exploring

ways to manage incidental information during co-located

collaboration. In Extended Abstracts of the Conference on Human

Factors in Computing Systems, CHI 2005. Portland, OR, USA. pp.

1431-1434.

[4] Hilbert, D. and Redmiles, D.F. (2000). “Extracting Usability

Information from User Interface Events,” In ACM Computing

Surveys, Dec. 2000, pp. 384-421.

[5] Hong, J.I. and Landay, J.A. (2001). “WebQuilt: A Framework for

Capturing and Visualizing the Web Experience.” In Proceedings of

The Tenth International World Wide Web Conference (WWW10),

Hong Kong, May 2001, pp. 717-724.

[6] Joda. (2005). Joda-Time, Version 1.1, August. 2005.

[7] Kellar, M. & Watters, C. (2005). Studying User Behaviour on the

Web: Methods and Challenges. In CHI 2005 Workshop on Usage

Analysis: Combining Logging and Qualitative Methods, Portland,

OR.

[8] Kort, J. and de Poot, H. (2005). “Usage Analysis: Combining

Logging and Qualitative Methods”, in CHI 2005 Workshops, April

2-7, 2005, Portland, Oregon, USA.

[9] Ostermiller, S. (2005). Ostermiller Utils, Version 1.05.00.

[10] Ware, C. (2000). Information Visualization: Perception for Design.

San Francisco: Morgan Kaufmann Publishers.

 8

Figure 8. Looking for privacy level patterns in web browser windows.

Figure 9. Adjusting category bar colours on the settings tab

 9

Figure 10. Looking for relationships between privacy level and category using coloured bar visualizations.

Figure 11. Exploring a participant s web browsing behaviour over time

