

FlightView: A Flight Information Visualization

Nicole Arksey

University of British Columbia

ABSTRACT

FlightView is an information visualization which displays several
days of possible flight information for specified routing, designed
for travel agents who book corporate travel. The visualization
enables travel agents to quickly look through days worth of
information to find the best flight for their customers.

The main visualization window displays nodes which represent
the cost, times of flights and airlines. A Bifocal lens is
implemented to help users reduce visual clutter and magnify areas
on the visualization. More detailed information about the flight
and possible saved flights are displayed at the bottom of the
visualization. Dynamic filtering is also included to help users
reduce the set of flights returned. FlightView was designed with
the help of real users at BTI Canada, a corporate travel agency and
has the potential to solve a real-world problem.

After the prototype was developed in Java using the prefuse
toolkit, user feedback was gathered from 7 users at BTI Canada.
Users generally like FlightView and had feedback on possible
improvements. This information is compile possible further design
changes. The next step for FlightView includes implementing
some of these recommendations from users, investigating some
outstanding usability issues and completing more formal
evaluations. Initial reactions to FlightView show that it is a viable
solution to the real-world problem.

CR Categories and Subject Descriptors: H.5.2 [Information
interfaces and presentation] User Interfaces

Additional Keywords: Information Visualization, Bifocal Display,
Focus + Context, Dynamic Filtering, Flight Information

1 INTRODUCTION

Those who have tried to book a flight online might have
experienced the frustration of trying to find the best flight to meet
all of your needs. These might include trying to find the lowest
fare, the shortest flight, a flight at a certain time of day and maybe
with a specific airline. There are many different dimensions to
choosing a flight and it is challenging and sometimes frustrating to
sort through all your possible options. This gives us a glimpse of
understanding the difficulty a travel agent experiences trying to
find flights for different travelers many times in a day.

 To gain a better understanding of these issues, I worked with BTI
Canada, a corporate travel agency. BTI Canada has 6 different call
centres across Canada and over 600 travel agents booking travel
throughout the day for thousands of different customers. A travel
agent at a call centre has extra pressure to find a flight that meets
their customers needs within a certain amount of time to enable
them to move onto the next client waiting on the phone.

There are two challenges which make the task of finding a flight
frustrating and time consuming for a travel agent. One challenge
is the method the flight information is displayed and the other is
the limitations in accessing the flight information.
 Currently, flight information is displayed in a long, plain text list
with many inconsequential details [see Figure 1]. For each flight,
information such as the flight's number, gate and the number of
seats for each class of service available is displayed even if these
details are not important to the travel agent during the booking
process. When a travel agent looks for a flight for their customer,
they must sift through multiple pages of flights and often complete
multiple search queries if the needs of the traveler are not met with
the original resulting list of flights. Looking through pages of
flights for multiple queries is time-consuming, inefficient and
travel agents can miss flight options for their travelers.

Figure 1:Current travel agent display of possible flights

 Accessing the flight information is another challenge in finding
flight information. Searches are limited because all flight
information is distributed through Sabre, a global travel
distribution system, and is retrieved through a network
connection.
 One of the limitations of Sabre is the type of queries which are
able to be performed. A travel agent can either search by
availability (which flights have seats available to book on) or by
low fare (return the cheapest flights). With an availability search,
all flights are returned without the price of the flight. A flight
must be selected from the flight listing and then priced. If the
price does not meet the traveler's needs, the travel agent must start
the search over. The low fare query will only return the lowest
fares and might not include all travel times. These queries do not
meet the requirements of the travelers who are trying to balance
many different needs, such as a customer who wants to purchase a
refundable ticket (class of service) for the lowest price possible
because not all information is available to the travel agent. Also,
to query for multiple days, a new query with a new date is
needed. To search for many days is very time-consuming and is
not often completed due to the time required for this.
 I was able to work with BTI Canada’s team of developers to
develop initial requirements and possible solutions. To solve
some of the issues experienced by travel agents, we propose
FlightView, a flight information visualization.

narksey@cs.ubc.ca

The requirements of the solution include:

• The display must be easy to understand and quick to learn.

• The results must be returned relatively quickly (within 2
minutes).

• The display includes an overview of all flights, but also has
the ability to get more information about specific flights if
needed.

• A filter to reduce the insignificant information the travel
agent and traveler do not need to make a decision about
booking a flight.

 The rest of this paper will discuss related work, a description of
FlightView and high-level implementation details will be
described alongside results and future work.

2 RELATED WORK

How to display hundreds of flights is an Information Visualization
problem. Due to the lack of work done in visualizing travel
information, FlightView utilizes techniques in Information
Visualization including focus+context and dynamic filtering to
help solve the problems with displaying hundreds of flights in a
single display. To implement these Information Visualization
techniques, the prefuse toolkit was utilized.

2.1 Focus+Context

An interesting problem in Information Visualization is the
question of focus+context, that is how can users view an overview
of their data and still be able to get more detailed information.
One approach to solve this \problem is the Bifocal Display which
can transform and magnify different dimensions in a visualization
[see Figure 2] [1]. FlightView will utilize a simple 2-dimension
Bifocal Display to allow travel agents to not only analyze an
overview but also highlight an area for more specific flight details
for that time. It is important that travel agents will be able to
quickly move over different time periods to share with the traveler
all of their flight options.

2.2 Dynamic Filtering

The problem of viewing flight information for multiple days in an
easy to understand way is similar to the problem of viewing large
database queries. The benefit of dealing with flight information is
that we know the dimensions ahead of time and can add filters to
make the interaction easier and more successful for users.

 An important aspect of viewing database information is the
ability to query and filter information dynamically. In FilmFinder,
this is accomplished by utilizing slider widgets on the side of the
display which users can interact with to limit their queries [2].
Sliders are a useful filtering technique because users are familiar
with using these to interact with other applications [see Figure 3].

Figure 3: FilmFinder with dynamic filtering

FlightView will utilize this technique to allow users to filter their
flight results.

2.3 prefuse

prefuse is a Java toolkit which utilizes Java2D to implement
Information Visualization interactive techniques [3]. The toolkit
enables developers to dynamically develop visualizations
techniques such as focus+context techniques, force-directed layout
graphs, hyperbolic trees, tree maps and radial layouts.

 prefuse includes methods to easily implement visual items,
layouts, graphic renders and UI controls. FlightView utilizes the
these to implement the graph and the Bifocal Lens.

3 DESCRIPTION OF SOLUTION

FlightView displays an overview of several days of flight
information, including cost of the flight, the airline and the length
of the flight. The ability to view several days of information is
very powerful to travel agents who, as previously mentioned, have
to search through pages and pages of text to get the amount of
information that can be displayed in this overview. FlightView
contains a central display which presents each flight found in the
search results. To aid in the interaction, FlightView also includes
a Bifocal lens, filters on the right hand side of the screen, a legend
for the colour of each airline and an area to display more detailed
and saved flight information [see Figure 4].

Figure 2: 2-Dimension Bifocal Display

Figure 4:FlightView (larger image in Appendix)

 In the central display, a rectangular colour node represents each
flight. The colour denotes the airline and each airline will have a
specific hue, so expert users will be able to pick out specific
airlines quickly form the display. For novice users, a legend will
display the airline and its corresponding colour for each airline
currently in the display. Each colour selected for the airlines will
need to be sensitive to colour-blindness because we don’t want to
hinder any travel agents performance. We ran our prototype
example through Vischeck.com to ensure our colours were usable
for colour-blindness. Figure 5 demonstrates what the nodes look
like for all three types of colour blindness. While colours do not
look the same as FlightView, the Figure does show the colours we
selected were discernable from one another.

Figure 5: FlightView nodes run through Vischeck.com for

Deuteranope, Protanope & Tritanope colou-blindness.

 The width of the node relates to the length of the flight. The
general height of the node has no specific meaning and was
chosen for aesthetics and ease of viewing. If a node’s start time
was before the end time of the previous flight at the same cost the
node’s size was doubled and made 50% transparent. This was to
help users be able to view nodes where otherwise they would be
occluded [see Figure 6].

Figure 6: Example of different size and transparent nodes to

deal with occluding nodes

 The Y-axis is cost of the flight and X-axis is the date and time of
the flight. Cost and time were chosen for the axes of the graph
because these are considered two of the most important factors for
travellers when booking a flight. Time was chosen for the X-axis
because the width of the node can demonstrate the length of the
flight. The Y-axis was chosen for the cost because users can
associate low-fares to flights lower on the visualization and higher
fares closer to the top and can therefore quickly spot low fares.
 To compute the placement of the nodes on the Y-axis, the axis is
divided up by how many different price points exist, rather than
scaling the axis. This was done because there are many flights
around a particular price point and scaling these causes the graph
to be concentrated in a certain region and makes each individual
node difficult to view.
 Labels and lines for the different price points run through the
nodes so if users are viewing a particular price point, they can see
which other flights fall on this same price point. Bars were not
added to the X-axis for each hour marker to reduce clutter and
ease reading. Although, each hour is not marked with a line each
separate day is marked and labelled so users can view the flights
contained within a specific day.

3.1 Focus+Context

FlightView also has the ability for users to magnify and transform
areas on the graph. Since there are hundreds of flights on the same
day and some flight times overlap, individual nodes are hard to
distinguish from one another. FlightView utilizes a simple 2-
dimension Bifocal lens to allow users to highlight an area for more
specific flight details [4]. The Bifocal lens transforms and
magnifies the different dimensions in the graph, so areas the user
moves over with their mouse are easier to read. While some areas
are magnified, the rest of the graph is still viewable by the user, so
they do not lose context of what day they are looking at within the
graph. We also tried a Fisheye lens and a 1-dimension lens [4], but
the Fisheye lens made the rest of the graph too difficult to read
and 1-dimensonal lens did not magnify the nodes enough to
reduce the visual clutter. Figure 7 shows an area of the graph
where the lens has moved magnified the area.

Figure 7: FlightView Bifocal lens example (larger image in

Appendix)

 As well as the Bifocal lens, users can get more detailed flight
information by hovering over a flight’s node. The information is
displayed on the ‘Flight Information’ text area at the bottom of the
screen. The detailed flight information includes, the times of
departure and arrival, class of service, airline and flight number
and cost.
 Users can double-click on flight’s node to select various flights
they might be interested and want to review later. The flight’s
information is displayed in the ‘Saved Flight Information’ text

area at the bottom of the screen. Once selected the, the node’s
colour is changed to black so users can see which flights are
selected in the graph in the overview or the focused lens [see
Figure 8]. This reduces the cognitive load on the travel agent when
trying to remember all the possible flights and details. The ‘Flight
Information’ and the ‘Saved Flight Information’ text areas are
located at the bottom of the screen and not beside the node so as
not to cover up any other nodes.

Figure 8: Saved flight information display (larger image in

Appendix)

3.2 Dynamic Filtering

Other features of FlightView are the dynamic filters on the right
hand side of the screen. These filters include the ability to choose
specific airlines and class of services to view, and select on
minimum and maximum cost of flights. For factors that are
absolute, such as a particular airline and class of service users can
choose what to factor from a drop-down menu. For factors with
continuous values, a slider bar was chosen so users can move the
values along a bar. While there are 2 sliders, one for minimum
and maximum cost, in the future I would like to move these to a
single slider. Figure 9 show what the airline drop-down menu
looks like after the user has selected it. Figures 10 and 11 show a
graph before and after a filter is applied.

Figure 9: Example of FlightView's filters

Figure 10: FlightView with no filters on data

Figure 11: FlightView with airline filter on data (only West

Jet flights displayed)

4 FLIGHTVIEW SCENARIO OF USE

A traveler calls into BTI Canada to book flight from Calgary to
Vancouver, for business. The travel agent asks the traveler what
day he would like to fly. The traveler gives the travel agent the
requested date, January 19, 2005. The traveler states they must
arrive in Vancouver before 10:00 am, but they can only spend $80
on the flight. The travel agent inputs the dates and the origin and
destination into Agent Interface. The travel agent asks the traveler
if they have a preferred airline they would like to travel on. The
traveler replies that it doesn’t matter as long as he gets there on
time. FlightView opens up [see Figure 12].

312: Scenario of Use: FlightView displays flights for YVR to

YYC on week surrounding January 19

 The travel agent reviews the information returned and sees there
is a flight available for that day for that prices and hovers over the
flight to get more details [see Figure 13].

Figure 13: Scenario of Use: Flight expanded and information

displayed at bottom of the screen

The travel agent informs the traveler there is a flight for the
morning. The traveler states he would like to book the flights; the
travel agent books the flight by double-clicking in the flight and
ends the file.

5 HIGH-LEVEL IMPLEMENTATION

A FlightView prototype was developed as a proof of concept and
to be able to get user’s initial feedback. FlightView was
implemented in Java utilizing the prefuse toolkit [3].
 FlightView currently does not consume live flight information
from Sabre because during development there was no access to a
connection to the Sabre network. Instead real flight information
was gathered and saved in a text file read in by FlightView. The
prototype was implemented with flight information for the routing
Vancouver to Calgary. We chose a simple domestic routing for
the prototype because it there are many flights throughout the day,
with different classes of service and price points, but we would not
have to deal with connections and layovers. This routing is a
popular routing for business travelers living on the West Coast
and is representative of what type of routing would be input into
FlightView. In the future, connecting FlightView to Sabre’s
network is necessary.

6 RESULTS

The FlightView prototype proves this is a viable solution to build
an interactive display with hundreds of nodes of flight
information. This example contains 627 nodes and there is room
for some scalability. Besides the number of nodes, FlightView
also meets performance requirements. User feedback is shows
potential and users offered many possible improvements.

6.1 Performance

The time required to return results to the user is a considerable
concern for FlightView. There are two areas where time could be
an issue for FlightView.
 One area of concern is the time needed to render the graph. After
implementing the prototype, it is clear that after the graph is
loaded with this amount of data FlightView can react in real-time.
When users are filtering the graph, the results are displayed in
close to real-time, so the interaction with the graph is seamless.

 The other performance concern is the amount of time needed to
get the flight information from the Sabre network. Since Sabre’s
queries are not built for the type of data searching needed to
display the cost for all available classes of service for several days,
many different queries have to be completed and compiled to get
this information. Initial time trials show the flight information for
7 days can be returned in less than 2 minutes.
 There are some techniques that can be utilized to help decrease
this performance time. One is to store popular routings in the
morning in a database and have FlightView query the database
which has a much quicker time to return search results than
querying the Sabre network. The other technique to help
minimize the performance time of Sabre’s network is to save
search queries on the user’s computer rather than write them to a
database. Instead of performing a new search query for the same
routing, a previous query for the same routing can be returned.
This will help reduce the waiting time for popular routings a travel
agent looks up several times throughout their day.
 Although FlightView’s required time needed to return results
within a certain time frame is an important performance issue, the
travel agent in the long run is hopefully saving time and providing
better customer service by providing all options to their travelers.
However much time it takes for FlightView to display results to an
agent, the manual process of looking up all those flights would
always take much, much longer.

6.2 User Feedback

After the FlightView prototype was implemented, 7 users at BTI
Canada were asked for their feedback. Since this visualization
technique was a novel way of viewing flight information, we
wanted to get user’s initial impressions of the tool, rather than
doing a formal study or evaluation. Their feedback will be used
for the next design phase so more formal user evaluations can be
completed.
 After describing a brief task scenario and description of
FlightView’s functionality, users were asked what they liked,
disliked and if they had any ideas for improvements of
FlightView.
 Users were generally positive about FlightView. Most could see
the benefits of viewing such a large amount of flight information
in a relatively small amount of space. Being able to view the price
for all different classes of service for a flight was acknowledged as
very useful. Also, users liked the capability of being able to pick
out low-priced flights over several days quickly.

Below is a list of other functionality users liked in FlightView:

• The lens helps view specific times of flights and decrease
visual clutter of flights spaces close together.

• The filters on the side to be able to narrow results
dynamically. Also, being able to go back to the full view
quickly and as easily as filtering the results to begin with.

• The ability to view more specific flight information when
you moved over the flight’s node.

There were some details users found confusing or didn’t view as
useful. Below is a list of functionality users generally disliked in
FlightView:

• The rectangular node representation of a flight is not
intuitive.

• The time on the X-axis need more labels and lines for
specific times throughout the days so it is easier for users to
see the hour the flight departs and arrives.

• The different size of the nodes that are overlapping is
confusing and it is not clear why the nodes would be
different sizes to the users. Some users thought the different
size had some significant meaning, although they didn’t.

• The specific flight details displayed at the bottom of the
screen are too distant from the node and it is difficult to
move your attention from the node to the information.

• There is no visual connection between flights selected and
the flights on saved flight list so it is difficult to remember
which flight information corresponds to which node.

• You have to use the mouse interaction to view flight
information. The current interface travel agents at BTI
Canada use is keyboard driven so users do not have to move
their hands off the keyboard.

Users also had some ideas on how to improve FlightView. Below
is a list of ideas for improvement:

• Change the X-axis to cost and the Y-axis to time.

• Add the ability to view queries with more than 1 condition.
For example, filter out all classes of services except for X
and J.

• Add the airline logo or the airline two letter code to the node
when it becomes expanded so users do not need to look at
the legend or the flight details to know the airline.

• Select how many days of flight information to view.

7 DISCUSSION

Discovered from the user feedback and evaluation of FlightView
there are some strengths and weaknesses which will be discussed
below. Also, from the user feedback we identified another group
of users who may also benefit from FlightView. Lessons learned
and future work is also discussed.

7.1 Strengths

FlightView is an easy-to use, display which has the capability of
viewing hundreds of flights over several days. Some of its main
strengths include the amount of information available in one
screen, the ability to look at an overview or view more details of
the specified flight and the dynamic filter to reduce irrelevant
information.

7.1.1 Interactive Information display

From the user feedback one of the biggest strengths of FlightView
is the ability to view and interact with so much flight information
in such a small space. There is no other tool like this available to
travel agents and it can save time when trying to search over
several days to meet customer’s needs. FlightView can help users
spot cheap flights out of hundreds available without having to
manually complete many queries for different times and days.

7.1.2 Overview and detail

Another feature users liked was the ability to move from the
overview to more details of the flight information. The overview
is useful because it allows users to quickly and easily pick out
inexpensive flights over several days. The Bifocal lens lets users
view more a magnified display on specific times so they can better
see the times of the flight. Also, by hovering over a flight users
can view the specific details of the flight including the airline,
flight number, class of service, cost and time of the flight. From
this users will have all the required information to book the flight.

 Although, some users complained that FlightView requires
mouse interaction, rather than just keyboard shortcuts, this is
something which needs to be further investigated. One of the
GOMS models will help quantify the amount of extra time this
will require [5]. Since agents would only have to move their hand
to the mouse once in every transaction this time hit might not
matter. Further studies will have to be completed to see if this
amount of time has a significant effect on user’s productivity.

7.1.3 Dynamic Filter

Another strength of FlightView is the dynamic filter. This is a
quick way users can reduce the returned set of flights to find the
flight their customer is looking for. The widgets to do this are
common widgets users would have used and seen before in other
applications. The filtering is done in real-time so users can view
their results right away and make the connection between the
filters and the flight nodes.

7.2 Weaknesses

From user feedback, a few weaknesses were discovered in
FlightView. These include the representation of the flight, lack of
information between saved flight and node and the actual cost of
the FlightView implementation.

7.2.1 Flight Representation

One issue that came up through the user feedback sessions was the
representation for the flight, a rectangle, was not intuitive to users
and was not a good representation. One user commented that the
display looked like a “DNA sequence”.

 Flight which times were overlapping to users were slightly larger
and transparent so the start and end time could be seen. This was
confusing to users because they thought this had a different
meaning than smaller and darker nodes.

7.2.2 Lack of Coupling Between Flight and Information

Adding to the confusion of the flight representation, there was a
problem with the coupling of the flight and the detailed flight
information. The flight information is displayed at the bottom of
the screen and although this was done to increase visibility of
other flights, it was time consuming to continue to look from
where the mouse was to the bottom of the screen for the details.

 Adding to the confusion between flight and detailed information,
there was no coupling between the saved flight information and
which flight was selected. So, if users saved 6 different flights the
list would display this information, but users would have to search
for which flight the information was for. One of the suggestions
from the users discussed above was to move the flight information
to appear beside the node and this technique might limit this
weakness because all flight information will be displayed beside
the node.

7.2.3 Cost

Another issue which came up in the implementation for
FlightView is the cost associated with doing this many queries in
Sabre. Each of these queries only costs $.007, but added up this
can be a large expense to the company and since the travel agents
don’t usually perform this comprehensive of a search this would
be an additional cost to the company. The benefit though is that
customers will be given truly the best choice out of several days

for their flight and with this added functionality and level of
service, the company could benefit in the long run. Also, some of
the suggestions in the ‘Performance’ section to improve the
running time would also help to reduce the cost of FlightView.

7.3 Users

Another issue discussed in the user feedback is the type of travel
and user FlightView would be useful for. While FlightView was
originally designed for corporate travel agents, it became clear that
it is more useful for situations where the traveler is driven by price
and not by availability and this is only a subset of customers for
corporate travel agents.

 One of the major lines of business at BTI Canada is the booking
of travel by redeeming points. FlightView may be better suited for
this group of travel agents who mainly deal in leisure travel where
customers are mostly concerned with the cost. This line of
business also has a higher turnover rate than corporate travel
agents so having a tool where users don’t have to learn the details
of Sabre might improve training time for new agents.
 Another group of users FlightView may be useful for is users
booking travel for themselves using an online self-reservation
tool. Users in this situation might become frustrated searching
for a flight in the traditional method because of their lack of
expertise in the travel domain and time required for them to find
the ‘right’ flight. By returning all flights over several days users
might be more confident they made the right choice and therefore
be happier with the self-reservation tool. Below is a scenario of
use for a traveler booking their own travel using a self-service
reservation system.

7.3.1 FlightView Scenario of Use for Traveler Booking
Travel Online

A traveler wants to book a flight from Vancouver, BC to New
Your, NY. The traveler opens up their web browser and logs on
to their self-service reservation tool. The traveler inputs the
origin, destination and preferred travel date. FlightView opens up
and the traveler can view possible flights for several days before
and after the preferred travel date. The traveler is a frequent
traveler and collects travel points on Air Canada, so he filters all
other airlines. He also selects business class service because he
only prefers to fly business class. The only flight in the morning
of his preferred day of travel will not get him there early enough
to make a meeting, but he notices there is a ‘red-eye’ flight the
night before. He slides the lens over to the previous day’s flights
and looks at the information for that flight. The traveler books this
flight.

7.4 Lessons learned

Many lessons were learned during the implementation of
FlightView, including learning a new toolkit, working within the
travel domain , some iterative design lessons and designing for
expert users.
 One challenge when implementing FlightView was learning the
prefuse toolkit in a way that would be both useful and efficient for
this project. After learning the main pieces of the toolkit, it was
easy to use and effective. I would recommend this toolkit for
other interactive Information Visualizations.
 The other lesson I continue to learn is how complicated the travel
domain is. I have a Computer Science background, but spent a
year working at BTI Canada. Although, I learned a lot during my
year there it seems there is always new things to learn. It is
complicated by the fact that there is a limitation in the
functionality and services available by Sabre. Since I was limited

by this, to build the visualization I had to get the information I
needed by doing inefficient search queries. The limitations of
working with Sabre help show the necessity of FlightView.
FlightView abstracts the details of Sabre and can take the
information retrieved from Sabre and give it to users in an easy-to-
use effective tool.
 Another lesson was in time-management. I would have liked to
have had more time to complete one more design cycle, make
some changes and then demonstrate FlightView to more users.
The feedback I received was invaluable and would have liked to
get more feedback throughout the process, not just at the
beginning and end. One reason this was not done, was due to
time constraints, but I would recommend doing less of something
else to make room for talking to users more.
 One of the most interesting things I learned was how difficult it
is develop a new information display for a group of expert users.
These users become proficient at using systems they are used to
and might be resistant to new displays, especially if the benefit is
not apparent to them. Having buy-in from a group of users and
having them more involved in the brainstorming and development
sessions might help this process.

7.5 Future work

The next step in this project is to take some of the suggestions
from the user feedback sessions, implement them and complete
formal user evaluations.
 Some of the changes for the next iterative design of FlightView
include:

• Moving the flight information detail to a context text box
beside the node so users can quickly view the flight’s details

• Removing the ‘Saved Flight Information’ because it takes up
valuable space for the display and no users commented on the
usefulness of this display. Once the user clicks on the node,
it will change color so if they would like to ‘remember’ a
node they have viewed they can quickly see the nodes that
have changed color.

• Adding the airline logo to the expanded flight node to help
user identify airlines without a looking at the legend.

• Adding the ability to filter by more than 1 condition.

• Unify the cost widgets into one slider bar rather than two.
 There are still some difficulties without clear answers about the
visualization. Some of these open-ended questions include:

• What shape should the node be? The current rectangle shape
is not intuitive to users and there might be a better shape
suited for this. For instance an arc might be more appropriate
or a glyph which both can be shapes associated with travel.
If arcs are used to represent flights techniques such as
EdgeLens, an interaction to deal with occlusion [6]. could be
used to deal with occlusion.

• Should the time and cost stay on the current axis?

• Is there a different interaction technique so users would be
able to use the keyboard or the mouse to get more
information about the flight?

 After another iterative design prototype is developed, formal
evaluations need to be completed to determine the effectiveness of
the tool. We would like to look at travel agents using both
FlightView and their traditional booking software and look at
times to complete tasks and if possible measure customer service
to see if the FlightView tool can help travel agents give better
customer service. Also, we would like to investigate the
effectiveness of FlightView for both beginner and expert and users

other than travel agents in corporate travel, such as travel agents in
leisure travel and travelers booking their own travel online

8 CONCLUSION

I worked with BTI Canada, a corporate travel agency to develop
an Information Visualization which displays and filters days worth
of flight information. The implementation was completed using
the prefuse toolkit and utilized Information Visualization
techniques to help solve the focuc+context and dynamic filtering
problem. User feedback showed that users were generally happy
with the interactive visualization and offered many areas for
improvement. More work needs to be completed to improve the
effectiveness of FlightView and user studies need to be completed
to prove the viability of this solution.

REFERERNCE

[1] Y.K. Leung and M.D. Apperley. A review and taxonomy of distortion-
oriented presentation techniques, ACM Transactions on Computer-Human
Interaction, Vol. 1, No. 2, June 1994, pp. 126-160.

[2] Christopher Ahlberg and Ben Shneiderman. Visual Information
Seeking: Tight Coupling of Dynamic Query Filters with Starfield
Displays. In CHI 1994, Human Factors in Computing Systems., 1994

[3] Jeffrey Heer, Stuart K. Card, and James A. Landa. prefuse: a toolkit for
interactive information visualization. y. In CHI 2005, Human Factors in
Computing Systems, 2005.

[4] R. Spence and M. Apperley, Data base navigation: An office
environment for the professional. Behaviour and Information Technology,
1(1):43--54, 1982.

[5] B.E John and D. E. Andkiera1996a. TheGOMSfamily
of user interface analysis techniques: Comparison and contrast. ACM
Trans. on Computer Human Interaction. 3, 4.

[6] Nelson Wong, M. Sheelagh T. Carpendale, Saul Greenberg,

EdgeLens: An Interactive Method for Managing Edge Congestion in

Graphs Proc. InfoVis03, pp 51-58.

APPENDIX

Figure 14: Larger Overview Image

Figure 17: Larger lens image

Figure 8: Larger Image of Saved Flight Information

