
Visualization of the Differences Between Many Genome Sequences

Michael DiBernardo
∗

Department of Computer Science
University of British Columbia

ABSTRACT

As high-thoroughput sequencing technology continues to advance,
large-scale sequence comparisons are becoming more common-
place. There do not yet exist any visualization tools that are ca-
pable of compactly displaying the differences between thousands
of genome sequences.

In this paper, we take the first steps towards a solution to this
problem by attempting to design a static overview to provide a
detailed summary of the sequence differences between HIV viral
genomes extracted from two different populations. The key chal-
lenges that are inherent to the problem of large-scale sequence com-
parison are identified and discussed to provide a framework for fur-
ther research.

Keywords: information visualization, biological sequence analy-
sis, genome browsers, catastrophic failures

1 INTRODUCTION

The publication of the first draft of the human genome sequence
was rightfully considered to be a milestone event in the history of
molecular biology. In the five years that have passed since then,
much work has been done to interpret this data so that it can be
leveraged to develop new diagnostics and therapies.

However, as high-thoroughput techniques continue to improve,
there is an increasing focus on retrieving and analyzingmultiple
copies of a genome sequence from specific population or individ-
uals from a species, instead of sequencing a single ‘consensus’
genome to represent the entire species. For example, the field of
pharmacogenomics is concerned with examining the particular ge-
netic inheritance details of a patient in order to develop a custom
treatment protocol for that patient. Another application is the com-
parison of differences between different gene versions oralleles
across human populations: the recently completed HapMap project
sequenced the genomes of 270 individuals across four populations
with the purpose of catalouging as many of these differences as
possible [2].

The space of useful large-scale analyses of this sort is not re-
stricted to the comparison of human genomes. Amidst the large
population in Africa that is exposed to AIDS, there exists a small
subpopulation that appears to be completely immune to the disease.
Researchers at the British Columbia Genome Sciences Centre have
isolated thousands of HIV samples from both immune and suscep-
tible populations and have sequenced the genomes of all of these vi-
ral samples. The question that they seek to answer is if the viruses
in the immune population differ genetically from the viruses iso-
lated from the susceptible population. This analysis is being done
by comparing each sample against a single canonical HIV sequence
and determining what the differences are relative to this canonical
sequence.

∗e-mail: mddibern@cs.ubc.ca

Interpreting volumes of sequence data of this magnitude is a dif-
ficult task, and one in which visualization tools would undoubtedly
be of use: One need only skim quickly through any introductory
textbook in molecular biology to see that biologists quite frequently
reason about sequence properties using sketches and other visual
abstractions. While there are many extant sequence data visualiza-
tion tools, most have been designed with the intention of comparing
a small number of sequences in great detail, and very few allow a
comprehensive simultaneous overview of thousands of sequences.

In this paper, I investigate a specific instance of the problem
of large-scale sequence difference visualization. The problem be-
ing addressed is the comparison of HIV viruses isolated from the
immune and susceptible populations described above. The re-
searchers performing this analysis expressed a desire for a single,
static overview that could be used to succinctly describe the impor-
tant aspects of the data in a figure in a journal publication; however,
such an overview would also be extremely useful as a view in an
exploration tool. The major contribution of this work is not an ef-
fective solution to this problem, but it has the benefits of identifying
the primary challenges in designing such an overview and of sug-
gesting possible directions for further research.

Before tackling this problem, however, it is beneficial to have a
general awareness of the work that has already been done in the
field of biological sequence data visualization so that we might
identify approaches that are particularly effective. This related
work is discussed in the following section. I then provide a more
detailed description of the problem at hand in section 3. Section 4
describes the proposed solution, and sections 5 and 6 discuss the
implementation and the evaluation of this solution. The concluding
section summarizes the strengths and weaknesses of my approach
and identifies the central difficulties that researchers will need to
address in order to construct an effective visualization tool for high-
volume sequence comparison data.

2 RELATED WORK

Visualization tools for biological sequence analysis are typically
used to browse sequencealignmentsor sequencefeatures. Align-
ment viewers are used to identify features that are shared among
sequences for the purposes of generating an annotation, while a
feature viewer is used to explore and modify a mature sequence
annotation.

A sequence alignment can be viewed as a relation among two
or more biological sequences that maps each nucleotide or amino
acid in a sequence to a nucleotide or amino acid in all other se-
quences in the set. If one sequence contains a contiguous segment
of nucleotides or amino acids that another does not, this difference
can be interpreted as aninsertionin the first sequence, or adeletion
from the second sequence. The basic representation of a multiple
sequence alignment across two or more genomes is a textual de-
scription of the alignment, as in Figure 1. Insertions and deletions,
or indels, are identified by the use of agap character, usually a
‘-’. Alignment viewers essentially take a textual alignment repre-
sentation like the one in Figure 1 as input, and produce a visual
representation or summary of the alignment.

A sequence feature is merely a region or attribute of interest in



Figure 1: An example of the raw output of a multiple sequence
alignment program (taken from the clustalw documentation)

a particular sequence. Classes of sequence features includegenes
and intergenic regions, as well asGC-rich regions (blocks of se-
quence that have a relative abundance of guanine and cytosine nu-
cleotides) andsingle-nucleotide polymorphisms(single nucleotide
substitutions that are known to occur regularly in different instances
of a particular species). Sequence features are often inferred by se-
quence alignment, and are the building blocks that biologists and
bioinformaticians use to make inferences about the function of a
sequence region.

2.1 Alignment Viewers

There are a variety of tools available to visualize sequence align-
ments, although many of them share common features. The NCBI
MapViewer [15] serves as a browser for genome assemblies, which
are essentially collections of alignments of sequence fragments
used to infer the entire genome sequence. Of particular interest
to this project is the Evidence Viewer (Figure 2) that identifies se-
quence features that have been inferred from alignments of known
messenger RNAs to a genomic region. Sequences are represented
as lines, and raised ‘blips’ in the lines are used to identify mis-
matches. The interface is rather spartan, and no overview is pro-
vided.

Figure 2: The NCBI Evidence Viewer

The VISTA alignment viewer [9] is a more full-featured tool that
is used specifically for processing raw alignments. A sliding win-
dow of a preset number of nucleotides is moved a nucleotide at a
time over the alignment, and the percent identity of each sequence
with respect to some ‘base’ sequence is computed in that window.
The percent identity is then plotted as a line graph (Figure 3) so
that one may quickly identify highly conserved and highly diver-
gent regions. Colour is used to distinguish coding and intergenic
regions. Although elegant, this approach does not scale to more
than a handful of sequences. Also, sequences at the top and bot-
tom of the display are more difficult to compare than those that are
directly adjacent to one another.

Synplot [5] is another basic alignment viewer that relies on
percent-identity plots (PIPs) to express sequence differences. How-
ever, Synplot also explicity represents insertions and deletions as
gaps in the lines representing the first or second sequence, respec-
tively. Colour is again used to highlight sequence features, although
some spatial encoding is also used to emphasize coding regions
(Figure 4).

Figure 3: The VISTA alignment viewer

Figure 4: The Synplot alignment viewer

KBrowser [17] is essentially a feature viewer that compares
the features of multiple genomes simultaneously; however, align-
ment data (in the form of percent identity plots) is also displayed.
KBrowser unfortunately lists all of the data tracks for a single
genome in a continguous block, instead of interleaving the tracks
for each genome (Figure 5). This makes it very difficult to compare
specific sequence features to one another. Displaying indels as grey
bands that stretch across all tracks is effective, but because substiti-
tutions are only shown across one track it appears as if they are less
important than indels, which may or may not be the case depending
on the problem being addressed.

Figure 5: The KBROWSER alignment and feature viewer

ECRBrowser [11] is a multiple alignment viewer that seeks
to emphasize evolutionarily conserved regions across vertebrate
genomes, regardless of position or function. These regions are iden-
tified by shared peaks in PIP plots and are outlined with a box when
detected by the software (Figure 6). Such an ECR can then be easily
extracted and viewed in more detail. Making this particular oper-
ation a fast one is a good design decision, because the extraction
of conserved sequence regions is almost always the purpose of a
sequence analysis. A chromosomal overview is linked to the main
view to maintain positional context, and features of sequence re-
gions are again encoded with colour.

While the browsers that have been discussed thus far have their
own individual strengths and weaknesses, they all share a common
‘look and feel’. Sequences are displayed as lines, sequence features
are displayed on surrounding lines or ‘tracks’, and percent-identity
plots are used to display an overview of sequence similarity. While
this homogenuity makes it moderately difficult to select one tool



Figure 6: The ECR browser and its visual components (taken from
http://ecrbrowser.dcode.org/)

over another, it does suggest that there are certain types of displays
that biologists are very familiar with when it comes to sequence
analysis.

However, some alignment viewers have sought to break the mold
in an attempt to overcome the inherent weaknesses of this approach.
SequenceJuxtaposer [16] uses an ‘accordian drawing’ rubber sheet
metaphor to display a large number of sequences at one time while
maintaining some overall context (Figure 7). Regions of interest
can be identified across some number of sequences by drawing a
box around them and ‘stretching’ them so that they are made larger
with respect to their surroundings. Nucleotides are represented as
colour-coded boxes, and when they are large enough in the display,
their single-letter codes are rendered as text within the box. Indels
are encoded as greyed-out boxes in the sequences that do not share
the insertion. The rubber-sheet metaphor permits the display of a
very large number of sequences at a very high resolution.

Figure 7: SequenceJuxtaposer

SockEye [10] is a 3D alignment viewer that differs from the 2D
alignment viewers discussed thus far by using the third spatial di-
mension to encode the significance of the alignment at a given re-
gion (Figure 8). However, the perspective view makes it difficult
to compare the thin vertical bar charts that represent the alignment
quality, and the fact that they are rendered with transparency only
amplifies this problem. No attempt is made to use the third dimen-
sion to alleviate the difficulty of having to lay sequences side-by-
side for direct comparison; sequences at the top and bottom of the
layout are still much more difficult to compare against each other
than those that are directly adjacent.

The biological arc diagram [20], known as a BARD, was devel-
oped to reduce the difficulty of comparing sequences that are not
laid out directly adjacent to one another. Arcs are drawn between
aligned bases in line representations of the sequences that compose

Figure 8: The SockEye alignment viewer

the alignment (Figure 9). However, this results in frequent line
crossings that usually have little or no significance in the structure
of the alignment, giving a general impression of visual clutter. Also,
effective comparisons are still easier between adjacent sequences,
because one does not have to follow the arcs as far.

Figure 9: A biological arc diagram representing a multiple sequence
alignment across four sequences

Some researchers have also applied dimensionality reduction
techniques to alignment display. For example, Tsalenko et al. were
interested in classifying certain sequence divergences with respect
to their ability to be used as markers for predisposition to diabetes
[14]. Thus, instead of using a standard display method to iden-
tify potential divergent regions of interest, they instead enumerated
all combinations of computationally identified sequence differences
and tested the efficacy of each such combination when it was used
as a marker for disease. For instance, if a particular collection of
SNPs was found only in the diabetic population, one would strongly
expect that an undiagnosed individual that also carries these SNPs
in their genome sequence would be highly predisposed to diabetes.
This concept was implemented as an assessment of ‘information
gain’ for each combination of sequence differences, and a visual-
ization of the information gain provided by each combination was
used to select the best markers.

2.2 Feature Viewers

Feature viewers differ from alignment viewers in that they are more
concerned with displaying the unique features of a sequence or a
set of sequences than they are with displaying differences between
the sequences in the set.

Caryoscope [3] and the Progenetix.net browser [18] are sim-
ple feature viewers that allow a high-level overview of an entire



genome with respect to a single quantitative variate of interest. The
genome is segmented into chromosomes, and coloured bar charts
on each side of a chromosome indicate the value of the variate in the
contained region (Figures 10 and 11). Caryoscope allows the depic-
tion of any sequence feature that can be described in a standard for-
mat known as GFF (General Feature Format); Progenetix.net dis-
plays the relative sequence loss and gain in tumour sequences with
respect to the ‘healthy’ chromosomal sequence. Neither browser
allows a more detailed view, apart from zooming in on an indi-
vidual chromosome. I evaluated the freely-available Caryoscope
software myself, and although it is elegant, the inability to provide
more detail is frustrating, and performance degrades heavily when
using even reasonably-sized datasets (such as those provided on the
author’s website).

Figure 10: The Caryscope single feature viewer

Figure 11: The Progenetix browser

The ENSEMBL map viewer [6], the UCSC Genome Browser
[7], and the open-source GBROWSE [13] are track-based feature
viewers that share many similarities. All provide a chromosome-
level overview of the genome being examined, and allow multiple
levels of zoom in the secondary view (Figures 12, 13, and 14). The
user can add or remove feature tracks by manipulating a feature
list. Glyphs on tracks are usually hyperlinked to specialized views:
For instance, clicking on a glyph that represents a SNP will open
a window that displays the list of known organisms that share the
SNP, and any potential physiological differences that have been at-
tributed with it. These viewers provide a great deal of detail that is
easily interpreted for a small number of sequences (four or five on
an average-sized display), largely because most of the data is spa-
tially encoded. The disadvantage of these viewers is that they are

delivered via dynamically generated HTML, and so any changes to
a view require the page to be refreshed. Because most browsers
will return focus to the top of the page after a refresh, adding or re-
moving a feature track requires that users reorient their view before
continuing with their exploration.

Figure 12: Overview (above) and SNP feature track view (below) of
the ENSEMBL map viewer

The SNP Launcher [4] is a feature viewer that provides very de-
tailed information about the quality of SNP assignments in a vari-
ety of genomes. All of the expressed sequence tag (EST) data that
was used to infer the existence of a particular SNP is visualized
spatially as a straight line beneath the canonical genome sequence.
The relative amount of sequence evidence is depicted as a bar chart
above the line that represents the genome. Clicking on a particular
EST or genome region will open a window with a textual align-
ment view; unfortunately, there is no way to rearrange the order of
the sequences presented in this detailed view. Further, SNPs in low-
and high-covered regions are distinguished by the case of the char-
acter that represents the nucleotide, a difference that is difficult to
pick out preattentively. SNPs in coding regions are coloured red, a
common practice in many viewers, but the saturated red is hard to
distinguish from the black background. There is no single overview
that can be used as an entry point to the view depicted in Figure 15:
One must specify a region of interest via a textual search query in
an HTML form. Finally, the windows that are opened by the ap-
plication are very difficult to close: A small square button in the
lower-right of the window must be clicked, which is nonintuitive in
almost any user interface.



Figure 13: The UCSC genome browser

Figure 14: The GMOD GBROWSE feature browser

Artemis [12] and Apollo [8] enable the user to access stagger-
ingly detailed views of a single genome annotation. Apollo (Fig-
ure 16) provides more overviews than Artemis, such as depictions
of high-level cross-chromosomal comparisons between vertebrate
genomes (in this example, human and mouse), while Artemis pro-
vides a very detailed view that shows, among other things, all six
open reading frames of the genome sequence at the region of in-
terest, line-plots of GC content, hydrophobicity plots, and splicing
and SNP patterns (Figure 17). In my (admittedly limited) expe-
rience working in genetics wet labs, this information is extremely
useful when designing DNA sequence probes or primers that are to
interact with the genomic region of interest, and so Artemis can get
away with not providing any sort of overview; the intention is that
it will only be invoked when a very specific region of interest has
been identified.

It is evident from this survey that certain types of data have a
common representation in many different tools, and that these rep-
resentations are thus likely to be familiar to researchers in molecular
biology. With these considerations in mind, we can move on to a
discussion of the problem and a proposed solution.

3 DISCUSSION OF PROBLEM

The description of the problem that we are trying to solve is not
that complicated. The subjects of the experiment are individuals
living in Africa. Each subject belongs to one of two populations, or
cohorts. The first population is thesusceptiblecohort, and is com-
posed of individuals who are infected with HIV and who demon-
strate symptoms of the disease. The second population is theim-

Figure 15: The SNP Launcher

Figure 16: The Apollo chromosomal synteny view

munecohort, and is composed of individuals who are infected with
HIV and who do not demonstrate symptomos of having the disease.

Multiple HIV viral samples were extracted from each individual
in each population. These samples were processed to remove the
genetic material, and each viral genome was sequenced. Each of
these viral genomes was then compared to a canonical HIV viral
genome sequence to determine the insertions, deletions, and substi-
tutions in the sample relative to the canonical sequence.

The data, then, is a list of changes relative to the canonical se-
quence. The canonical sequence itself is about 9300 bases in length.
Bases in the canonical sequence are numbered starting at 1. Each
change is labelled as originating from the susceptible cohort or the
immune cohort. Substitutions are described by the position of the
base in the canonical sequence that was modified, and the letter
code of the base that it was changed to. Deletions are described
by an inclusive range of bases in the canonical sequence that were
deleted or missing in the viral sample. Insertions are described by
the number of the base in the canonical sequence at which the in-
sertion begins, the length of the sequence that was inserted, and the
actual sequence of bases that was inserted. For instance, an inser-
tion of the sequence ACGTT at base 4 means that in a comparison
of the canonical sequence and a viral sample, the extra sequence
ACGTT was found in between the viral bases that correspond to
bases 4 and 5 in the canonical sequence. See Figure 18 for a visual



Figure 17: The Artemis feature browser

representation of this insertion; the concept is quite simple, but can
be difficult to describe in words.

The problem is to find a method of visually representing all of
these changes in a single overview, subject to some restrictions.
This overview must be extremely intuitive to interpret, because the
intention is that it will serve as a ‘visual introduction’ to the findings
of the study. This suggests that an effective solution would use
display paradigms that biologists are used to working with. We
have seen in the previous section that sequence difference data is
often laid out on horizontal, spatial ‘tracks’, and that line graphs are
commonly used to display quantitative data. Abstraction techniques
such as semantic zoom and glyphing would likely require too much
cognitive ‘overhead’ to decipher for the average reader.

Data aggregation and other reduction techniques must also be
used sparingly, because difference data quickly becomes useless
when detail is lost. This is because small changes in biological
sequences can produce profound effects; for instance, becausethe
DNA bases that code for amino acids are read in triplets, the dele-
tion of one or two bases is a catastrophic event because it changes
the composition of the subsequent triplets. This is known as a
‘frame shift’ mutation. Single-nucleotide polymorphisms are per-
haps the most innocuous change that one could imagine, because
they only change the identity of a single base. However, many SNPs
have been associated with disease or loss of function in a variety of
organisms, and so even these minute changes are important.

A one sentence summary of the ideal solution, then, is a single
overview that is easily interpreted by biologists and that allows for
a detailed description of the changes that occured at each base in
the canonical sequence.

1 2 3 4 5 6 7 8 9

T A C T - - - - - G G C G A

T A C T A C G T T G G C G A

Figure 18: Raw textual representation of an insertion in a viral sample
relative to the canonical sequence. The top sequence is the canonical
sequence, while the bottom sequence is the viral sample.

4 PROPOSED SOLUTION

In the previous section, I described the problem and the nature of
the data. Specifically, I identified the variates that are required to
completely describe each of the possible sequence changes. De-
signing a solution to the problem required that I first select a subset
of these variates to display, and then decide how to display them.

4.1 Selection of Variates

Substitutions are specified by a position in the canonical sequence,
the letter of the base that was changed, and the letter that the base
was changed to. For the purposes of the overview, I decided that the
existence of the substitution was more important than the nature of
the change itself; that is, the fact that a substitution occurs at base
24 is more important than the fact that base 24 changed from an
adenine to a guanine. Thus, substitution data can be encoded as the
probability that a substitution will occur at a given position in the
canonical sequence.

Deletions are usually specified by a start position and a length.
However, in the previous section I described a deletion as an inclu-
sive range in a sample sequence. This is because for most applica-
tions, the fact that a base is missing from a sequence is more im-
portant than the fact that the deletion started at particular base. For
instance, if in one sample, bases 10-20 are missing, and in another
bases 15-25 are missing, we could make two types of observations.
The first observation is that bases 10-14 and 21-25 are missing 50%
of the time, whereas bases 15-20 are missing 100% of the time. The
second observeration is that deletions originate 50% of the time af-
ter base 14, and 50% of the time after base 19. The latter sort of
observation is useful when searching for specific ‘hot spots’ in the
genome that are especially prone to being clipped; however, most of
the time the knowledge that a base is frequently removed in a dele-
tion of some length is more than sufficient. This is because regions
that are frequently deleted can be assumed to have little effect on
the continuance of the organism, and thus likely do not contribute to
any particular function. Thus, I decided to represent deletions with
a single variate: The probability that particular base in the canon-
ical sequence will be missing in an extracted sequence. Deletion
origins and lengths are completely ignored. The actual sequence
that was deleted is also not considered to be required knowledge.

Insertions are a difficult case. Both the origin and the length
of the insertion are important, while the actual sequence being in-
serted is perhaps of lesser concern. However, there is no simple
single-variate reduction that can be used to describe an entire inser-
tion, and so for every position in the canonical sequence, I chose
to display both the probability that an insertion will occur after that
particular base, and the average length of an insertion that begins at
that position. Averaging lengths is a particularly dangerous thing to
do, as it precludes the interpretation of length distributions.

In summary, the variates that were selected were probability of
substitutions at each base; probability of deletion of each base, and
probability and average length of an insertion occuring after each
base.

4.2 Visual Encoding of Variates

As discussed earlier, one of the design goals was to encode the se-
lected variates in a way that was immediately familiar to biologists.
As such, the use of line and area charts and the like was preferred
to the use of glyphs and other more abstract encodings. An initial
mockup of the proposed solution can be seen in Figure 19.

Because the majority of sequence viewers represent the genome
sequence as a horizontal line, I chose to adhere to this convention;
the position of bases on the canonical sequence is encoded spatially
across thex-axis. Substitution probabilities for each cohort are en-
coded spatially in the positivey-axis, using a line graph with two



Figure 19: Mockup of proposed solution. Substitution data is rep-
resented with line graphs at top of display; insertion data is repre-
sented with area and line plots at bottom of display; deletion data
is represented by gradient bars that double as the x-axis. Genes are
represented by rounded rectangular regions behind the gradient bars.

series to maintain continuity across the sequence. Colour is used to
distinguish the two populations; the susceptible population data is
drawn in red, while the immune population data is drawn in blue.
The human perceptual system is particularly sensitive to line cross-
ings [1], which in this context is useful because such crossings in-
dicate regions where the substitution probability in one population
overtakes that of the other population.

Insertions are encoded spatially in the negativey-axis. Because
insertions are represented by two variates, two data points must be
plotted per column for each population. In order to reduce clutter,
the susceptible population data is displayed separately from the im-
mune population data. Insertion probabilities are plotted as an area
chart, which can be viewed as a very high-resolution histogram.
Area charts are used to distinguish this display from the line graphs
that describe the substitution data. Again, colour is used to distin-
guish populations. Average insertion lengths are plotted as a line
chart overtop of the area chart. A textured line is used to ‘soften’
the effects of the line/area crossings, as they are not informative in
this display and should not draw attention to themselves. The in-
version of one of the plots allows the display of 4 data points per
column without a great deal of clutter, but admittedly makes it diffi-
cult to compare insertion probabilities and lengths between the two
populations.

Deletions are represented with a pair of gradient maps that are
positioned along thex-axis. The top bar represents the susceptible
population, while the bottom bar represents the immune population.
The lightness of the bar at a given position is used to represent the
probability that the base at that position will be deleted in a viral
sample. The gradient bar allows for a compact representation of
the deletion data, and also serves as a visual anchor for thex-axis
in the display.

Note that this overview could concievably be used both as a fig-
ure in a publication, or as a overview in a multi-view visualization
tool; a rectangular ‘window’ could be placed in the overview to de-
note the region being examined in a more detailed view, and this
window could be moved by clicking and dragging the mouse.

5 IMPLEMENTATION

The view described in the previous section was implemented using
Java 1.4.2. A model/controller/view architecture was adhered to
even though the current state of the application does not permit in-
teraction: This was done to make future extensions to the software
as easy as possible.

After evaluating many visualization toolkits, I decided to use the
JFreeChart SDK to implement the line and area charts used in the
substitution and insertion views. I could not find any existing soft-
ware to create the gradient bars for the deletion plots, and so I im-
plemented those myself using the Java2D library.

The data itself is stored in the General Feature Format (GFF), at
the request of my collaborators at the BC Genome Sciences Centre.

The GFF is a rigid, plain-text, human-readable file format that is
used specifically for describing sequence features.

5.1 Challenges Encountered

Several challenges were encountered in the process of translating
the high-level design into software. These challenges and my at-
tempted solutions are described here. The efficacy of the solutions
is evaluated in the following section.

5.1.1 Lack of Critical Feedback

The one lesson that I have learned from working in biology wet-labs
is that science can and often does go completely and horrifically
awry. It is not uncommon for Ph.D projects that have an expected
duration of 3 years to require more than double that time to com-
plete. Thus, I was not especially surprised when similar problems
cropped up throughout the course of this project. Very early on in
the design phase, my collaborators at the Genome Sciences Centre
became extremely involved in their work and were essentially un-
available throughout the duration of the project. Thus, I was forced
to abandon my original plan, which was to engage in an iterative
design process that would involve constant feedback from the re-
searchers that would eventually be using the software.

I used two techniques to attempt to produce a useful solution
in the absence of informed criticism. First, I performed cogni-
tive walkthroughs of how I would use the software as a user of the
system; however, these were somewhat limited in utility given my
lack of domain knowledge and of the specific details of the project.
Second, I requested input from friends and colleagues that I have
worked with before in the fields of bioinformatics and molecular
biology. Ultimately, though, there is little that I was able to do to
ensure that this tool would be useful to the knowledge workers that
requested it. The lack of feedback also drastically increased the
time of development, because I found myself constantly evaluating
and re-evaluating design decisions that I could not adequately rea-
son about with my limited exposure to the actual research problem
being addressed.

5.1.2 Lack of Real Data

Another unfortunate consequence of the project delay was that I
was not able to gain access to the data that my collaborators wished
to analyze. This was not a large problem in the early stages of devel-
opment, since I was able to do basic testing with hand-constructed
datasets. However, as the project matured, I required larger and
more representative datasets to allow for evaluation of the system.

I accomodated for this difficulty in two different ways. First,
I wrote software to produce datasets from probabalistic models
of sequence evolution. When modelling sequence evolution, it is
common to assume that individual mutation events are Poisson dis-
tributed, and that the lengths of insertions and deletions are geomet-
rically distributed [19]. This data was useful in that it represented a
‘worst case’ in terms of noisiness and density: for example, Figure
20 demonstrates a scenario where the mutation rates are the same
in both populations, but the indel lengths are longer in the immune
population than in the susceptible population.

However, this did not allow me to evaluate the effectiveness of
the system when used with real data. To this end, I designed a
toy experiment based on an existing dataset that could be used as a
testbed for the system. HIV genome sequences were downloaded
from the HIV Sequence Compendium website[21]. A total of 75
sequences were downloaded, with 37 isolated from individuals in
Kenya, 37 isolated from individuals in Uganda, and 1 isolated from
an individual in Ethiopia. Ethiopia and Kenya share a border, but
Ethiopia and Uganda do not; the experiment was to see if the sam-
ples isolated from Kenyan individuals were more divergent from



Figure 20: Display of random data. Each population consists of
5000 samples. Mutation frequencies are Poisson-distributed with a
mean of 20 mutations per sample. Indel lengths are geometrically
distributed with length 10 in the susceptible population (blue, top
gradient) and length 20 in the immune population (red, bottom gra-
dient)

the Ethiopian sequence than the samples isolated from Ugandan
individuals. In this scenario, the Ethiopian sequence serves as the
canonical sequence, and the Kenyan and Ugandan sequences served
as the two sample populations.

Unfortunately, I was unable to acquire a genetic map of the
Ethiopian sequence, and thus I could not identify what regions of
the sequence coded for genes; the original intention was display
gene regions as rounded rectangles as seen in Figure 19.

The sequence data were downloaded as a multiple alignment of
all 75 sequences. The sequence alignments provided by the HIV
sequence compendium have been manually curated and are thus
considered to be of very high quality. I wrote a Perl script to trans-
late this multiple sequence alignment into GFF-formatted data. The
results of this experiment are discussed in the following section. A
view of the data can be seen in Figure 21.

5.1.3 Density of Data

As discussed earlier, the HIV genome is approximately 9300 bases
in length. Because the width in pixels of the average monitor ranges
from 800 to roughly 1300 pixels, it became evident early in the
project that each of the positions in the canonical sequence could
not be assigned a display column of even a single pixel in width.
However, this sort of resolution is necessary with the proposed so-
lution in order to display detailed features such as single-nucleotide
polymorphisms.

My first attempt at a solution for this problem was to split the
canonical sequence inton pieces and to create a separate display
component for each segment. These components were stacked ver-
tically and labelled with base pair ranges. However, there is a
limit to how many components can be stacked vertically before the
length-to-width ratios of the individual graphs become low enough
to make interpretation of the data almost impossible. Figure 20
shows a display withn=4, which I found to be a happy medium
when the application window is maximized to occupy the entire
screen. However, there is still the issue that one column of pixels
of any particular component must represent 3 to 4 base pairs of the
canonical sequence, and this is in ‘best-case’ scenario where the

Figure 21: Display of substitute dataset. Canonical sequence is an
HIV viral genome sequence extracted from an Ethiopian patient.
Blue/top population is composed of 37 Kenyan HIV sequence iso-
lates, and red/bottom population is composed of 37 Ethiopian HIV
sequence isolates.

application window is maximized: If this tool was to be used as a
linked overview, it would only occupy a small portion of the screen
space.

This problem is especially dangerous because of the reliance
of the solution on the JFreeChart library. The behaviour of the
JFreeChart plots is essentially undefined when there more data
points to plot along a single axis than there are available pixels
along that dimension. Thus, some reduction of the data was re-
quired to produced a one-to-one mapping of data points to pixels
along thex-axis.

The approach that was taken was simple, and less than ideal. For
all quantities that are displayed in each component, a windowed
average was computed and plotted instead of the raw data. For
instance, in the substutition plot, if the data density is 4 bases to
1 pixel, an average of the substitution probabilities across those 4
bases is computed and displayed. It is disconcerting that when this
technique is applied to the insertion length component, this results
in the computation of an average ofaveragelengths, which is cer-
tainly not an intuitive quantity to reason about. A comparison of
an averaraged and an unaveraged display can be seen in Figure 22.
The extensive drawbacks of windowed averaging are discussed in
the next section.

5.1.4 Data Distribution

A comparison between the initial conception of the display in Fig-
ure 19 and an example of the display of real data in Figure 21 makes
it very clear that the mockup made some unrealistic assumptions as
to the nature of the data. In the mockup, the data is very ‘well-
behaved’ in that it forms smooth, normally distributed curves that
are easy to follow and compare. However, the tendency of muta-
tion frequencies to follow a Poisson distribution and indel lengths
to follow a geometric distribution means that any practical depic-
tion of real data will not be nearly as pleasing to look at. Especially
difficult is the tendency for indels to occur infrequently in very nar-
row regions of sequence: This results in large, simultaneous spikes
in both the insertion frequency and insertion length in very narrow
regions of the chart. These spikes result in the obfuscation of the
insertion probability plot by the insertion length plot, which makes



Figure 22: Comparison of raw data (top) and window-averaged data
(bottom) for the random data display from Figure 20

the interpretation of these quantities extremely difficult, and addi-
tionally make it hard to compare indel lengths and probabilities that
are relatively small compared to the largest data point in the plot.
There is also a tendency for every third residue in a coding region to
experience a heavy substiution rate because the redundancy of the
genetic code means that such mutations will generally not result in
a change to the translated amino-acid sequence, and so the substi-
tution chart appears very noisy, with frequent spikes that make it
difficult to pick out more salient substitutions (such as those that
would actually change the encoded amino acid).

An attempt was made to reduce the difficulty of comparing inser-
tion data by plotting them on a log scale; however, reactions to this
change from my informal correspondents was overwhelmingly neg-
ative. The general consensus was that the log plot ‘homogenized’
the length quantities to such an extent that it made it impossible
to accurately gauge what those lengths actually were, and so the
decision was made to leave the linear axes in place.

5.1.5 Performance

There are four computationally intensive tasks that are performed
by the system: Parsing the raw difference data, aggregating the
data, storing the aggregated data in datasets that can be used by
the JFreeChart renderers, and actually rendering the data. The first
three tasks are performed at launch, whereas the rendering process

Table 1: Speed of system launch before and after optimization. Mea-
surements are of average walltime, in seconds. 5 trials were run on
a 1.2GHz iBook with 768MB of RAM. All numbers are with respect
to random dataset displayed in Figure 20

Task Before (s) After (s)
Parsing 15.4 15.4

Aggregation 0.3 0.3
Dataset Population 96.2 0.02

must be repeated each time the display is resized or otherwise mod-
ified.

The initial prototype of the system was implemented without any
sort of optimization; emphasis was placed instead on keeping the
design clean and easy to extend or modify in the event that op-
timization of certain components would be needed after profiling.
After the first prototype was complete, a performance evaluation on
the random datasets described above (composed of approximately
200 000 individidual change events) showed that the system was
painfully slow in both the initialization and rendering phases.

The computational bottleneck in the initalization phase was iden-
tified as being the transfer of the aggregated data into the JFreeChart
dataset objects. The JFreeChart data storage library as provided was
not specifically designed to handle extremely large datasets, and so
I extended it to add this functionality. A preliminary analysis of the
east African HIV data described previously revealed that the data
was sparse in many regions; for instance the insertion probability
for most of the genome is 0. Also, data is always accessed in as-
cending order when rendering the plot. A linked list was thus used
to store the nonzero data points, and a pointer to the previously
accessed nonzero list element is maintained as part of the state of
dataset. This makes the initial population of the dataset and the re-
trieval of the data during the rendering process much more efficient:
See Table 1 for details.

The issue of rendering speed was significantly improved when
the windowed averaging technique described in the previous section
was implemented, because of the reduction in the number of actual
data points that are rendered. However, the rendering process is still
somewhat slow, requiring 4-8 seconds to redisplay the data when
the display window is changed.

6 RESULTS

In order to evaluate the strengths and weaknesses of the system de-
scribed in the previous two sections, a total of four scenarios of
use were conceived, using four different datasets. In each of these
scenarios, the question to be answered is very simple: What is the
difference between the two populations with respect to the canoni-
cal sequence?

An assessment of the accessibility of the software to individuals
with colour-blindness was also performed.

6.1 Scenarios of Use

6.1.1 Finding a simple trend in the first random dataset

A random dataset was generated where both populations had sim-
ilar rates of mutation, but where indels tended to be larger in one
population than the other. I randomized the selection of the popula-
tion with the longer mean indels so that I would not knowa priori
which population I should expect to exhibit the trend. I visualized
this data with and without the windowed averaging enabled. The
results can be seen in Figure 22.



In both displays, the trend that is most easily seen is that the
red/bottom population more frequently experiences base deletion
than the other population. While the dataset was designed to have
equal mutation rates for both populations, because the deletions in
red population tended to be longer, more bases were deleted on
average than in the blue population, even though thenumberof
deletion events was roughly equal. This demonstrates one of the
problems with choosing not to display the probability of a deletion
event; it is impossible to distinguish whether the high deletion rate
in a region was caused by frequent, short deletions, or infrequent
long deletions.

Despite the fact that both insertion and deletion lengths were
larger in the red population, it is not at all apparent from either
display that insertion lengths in either population differ by much.
The reason for this is that each population sustained a single inser-
tion that was extremely long compared to the others in the dataset,
but relatively similar in length to one another. The scale of the in-
sertion length plot is thus adjusted to accomodate for these very
long insertions, and this makes it difficult to distinguish any sort of
global difference in average insertion length between the two popu-
lations. Also, the insertion length plot is distracting in both displays
because it appears to be an airbrush pattern instead of an actual line
as a result of the irregular distribution of the data.

The substitution plot does not confer much information other
than that the substitution rates seem to be uniform and roughly
equal in magnitude across the whole canonical sequence for both
populations, which is certainly an accurate description of the un-
derlying model.

Finally, notice that the averaged plot smooths away some of the
lines that were present in unaveraged plot. It was not clear to me
if the extra lines in the average plot were actually informative, or
if they were produced as a side-effect of the antialiasing that the
JFreeChart line renderers use.

6.1.2 Finding a simple trend in the second random dataset

A second random dataset was generated where both populations
had the exact same mutation rates and mean indel lengths (Figure
23). These mutation rates and indel lengths were smaller in magni-
tude than those in the previous dataset.

It is fairly obvious from the both displays that the probability of
any mutation in both populations is lower than in the previous sce-
nario: The lines in the substitution and insertion plots are closer to
thex-axis, and the deletion bars are relatively dark in comparison.
However, because of the density of the data in the lower regions of
the substitution plot, the red population data in the unaveraged sub-
stitution display is obscured by the equally noisy blue population
data that is rendered last.

6.1.3 Finding a simple trend in the third random dataset

A third random dataset was generated where one population had
both a higher mutation rate and mean indel length than the other.
Again, a population was randomly selected to receive the high mu-
tation rate. The visualization can be seen in Figure 24.

In this case, it is obvious that the blue population has the higher
substitution rate, deletion rate, and insertion frequency. However,
there is still the issue that it is impossible to tell if the higher dele-
tion rate is a result of longer deletions or more frequent deletions,
and again the insertion lengths in both populations are not easy to
distinguish from one another because of several very long insertions
that expand the scale.

6.1.4 Exploring a real dataset

The dataset described in section 5.1.2 was visualized with and
without the application of windowed averaging. The Kenyan se-

Figure 23: Comparison of raw data (top) and window-averaged data
(bottom) for random data with equally low mutation rates in both
populations

quences were assigned to the blue/top population and the Ugandan
sequences were assigned to the red/bottom population. A compari-
son of the unaveraged and averaged views of this data can be seen
in Figure 25.

Several things are noticeable in both views almost immediately.
Both populations frequently have a large deletion with respect to
the canonical sequence at the beginning; this is not uncommon, and
is usally a result of sequencing and assembly techniques and not in-
dicative of an evolutionary difference. Deletions are rare but usually
occur concurrently, except at around position 2000 where a deletion
is much more common in the Kenyan samples than in the Ugandan
samples. Substitution rates also occur similarly across both popula-
tions, with substitions being particularly rare at the sequence ends.
That substitutions are rare near the terminal end is not as obvious in
the averaged view because the overall scale is smaller and the av-
eraging tends to ‘flatten’ this distribution; this is evidence that the
averaging does in some way ‘lie’ about the true distribution to the
user. Also, the substitution plots in both displays are quite divergent
at times, which again implies that the windowed averaging may be
producing an unrepresentative oversimplification of the data.

The insertion display holds a few surprises. Insertions happen
infrequently on the whole, but there are several ‘hotspots’ at very
narrow regions of the sequence. The unaveraged display actually
hides some of these because they have a span of less than a few



Figure 24: Comparison of raw data (top) and window-averaged data
(bottom) for random data, where one population has a higher mu-
tation rate and indel length than the other population

bases and thus will be rendered only at the whim of the JFreeChart
plot renderer. The averaged view exposes more of these insertions
– particularly obvious examples can be seen around position 700,
and in the last quarter of the sequence – but appears to have obfus-
cation problems of its own, because very small insertions that are
surrounded by regions with no insertions at all are de-emphasized.
Thus, some insertions that appear in the unaveraged view are not
visible in the averaged view. This indicates that both displays are
blatantly misleading the user in some way, which is a severe inade-
quacy of the system. Also, the sparseness of the insertions indicates
that they could conceivably be represented with some sort of com-
pact glyph without producing excessive clutter.

The uncertainty that I was confronted with when using the sys-
tem to perform this task implies that the solution is inadequate for
any sort of real-world task. The only component of the display that
appears to be useful and reliable is the gradient bar that is used to
encode the deletion data.

6.2 Accessibility

A colour-blindness simulator was used to assess the useability of
the tool for users who have various forms of colour blindness. Fig-
ures 26, 27, and 28 demonstrate what Figure 20 would look like to
a deuteranope, a protanope, and a tritanope, respectively. The sim-

Figure 25: Comparison of 37 HIV viral genome sequences extracted
from Kenyan patients (top, blue) and 37 sequences extracted from
Ugandan patients (bottom, red) with respect to a single ‘canonical’
HIV sequence isolated in Ethiopia. Both unaveraged (top figure) and
averaged views (bottom) are shown here.

ulations were generated by the Vischeck online image generator at
http://www.vischeck.com.

While the red curve in the substitution plots in Figures 26 and 27
are admittedly difficult to see, the displays are by and large inter-
pretable in all of the simulations. The colour and lightness scheme
should therefore be readily accessible to all users.

7 LESSONS LEARNED, AND FUTURE WORK

The objective of this project was to generate an effective overview
to compare two large populations of genome sequences with respect
to there differences relative to some canonical genome sequence.
The overview was required to be easily interpretable by biologists
and to provide sufficient detail to allow the recognition of fine se-
quence details such as SNPs.

It should be readily apparent from the previous section that this
objective was not fulfilled. An attempt was made to use ‘traditional’
components such as line and area plots in the overview to allow
for ease of interpretation; however, in order to accommodate the
density of the data being displayed in these plots, some abstraction
and averaging of the data had to be done, and these transformations



Figure 26: Figure 20, as seen by a deuteranope.

Figure 27: Figure 20, as seen by a protanope.

tended to eliminate detail and to introduce misleading artifacts into
the display.

In my opinion, the fundamental challenge that makes this a dif-
ficult problem is that the display must on the one hand be easily
interpretable, but on the other hand must accomodate the display of
very dense data with minimal loss of detail. Techniques for deal-
ing with density often involve some sort of semantic encoding that
can abstractly represent a very detailed dimension of the data while
occupying minimal display area, at the expense of some extra re-
quired effort on the part of the viewer to learn how to interpret
these encodings. I believe that in order to realize the goal of creat-
ing an effective overview for large-scale sequence difference data,
the requirement of ‘instant familiarity’ will have to be relaxed so
that a more abstract representation can be used. Such an approach
would be especially effective for displaying insertion data, because
insertions are both the most difficult element of the data to display
correctly, and because they tend to be very sparsely distributed and
thus are good candidates for representation by some sort of glyph
or symbol.

The most important thing that I learned throughout the course of
this project is that a good design cannot be produced by a person
working in isolation. If I could go back and change one of my
decisions regarding this project, it would be the decision I made to
work alone. The large amount of time I spent evaluating and re-
evaluating my design decisions would have been greatly reduced
had I been working with someone that I could discuss ideas with.

Figure 28: Figure 20, as seen by a tritanope.

REFERENCES

[1] Ware C. Information Visualization: Perception for Design. Morgan
Kaufmann Publishers, second edition, 2004.

[2] The International HapMap Consortium. A haplotype map of the hu-
man genome.Nature, 437:1299–1320, 2005.

[3] Awad IA et al. Caryoscope: an open source java application for view-
ing microarray data in a genomic context.BMC Bioinformatics, 5:151,
October 2004.

[4] Clifford RJ et al. Bioinformatics tools for single nucleotide polymor-
phism discovery and analysis.Annals of the New York Academy of
Science, 1020:101–109, 2004.

[5] Gottgens B et al. Long-range comparison of human and mouse scl
loci: Localized regions of sensitivity to restriction endonucleases
correspond precisely with peaks of conserved noncoding sequences.
Genome Research, 11(1):87–97, 2001.

[6] Hubbard T et al. Ensembl 2005.Nucleic Acids Research, 33:D447–
D453, 2005.

[7] Karolchik D et al. The ucsc genome browser database.Nucleic Acids
Research, 31(1):51–54, 2003.

[8] Lewis SE et al. Apollo: a sequence annotation editor.Genome Biol-
ogy, 3(12):RESEARCH0082 (Epub), 2002.

[9] Mayor C et al. Vista: Visualizing global dna sequence alignments of
arbitrary length.Bioinformatics, 16(11):1046–1047, 2000.

[10] Montgomery SB et al. Sockeye: A 3d environment for comparative
genomics.Genome Research, 14:956–962, 2004.

[11] Ovcharenko I et al. Ecrbrowser: a tool for visualizing and accessing
data from comparisons of multiple vertebrate genomes.Nucleic Acids
Research, 32:W280–W287, 2004.

[12] Rutherford K et al. Artemis: Sequence visualization andannotation.
Bioinformatics, 16(10):944–945, 2000.

[13] Stein LD et al. The generic genome browser: a building block for a
model organism system database.Genome Research, 12(10):1599–
1610, 2002.

[14] Tsalenko A et al. Methods for analysis and visualization of snp geno-
type data for complex diseases. InPacific Symposium on Biocomput-
ing, pages 548–561, 2003.

[15] Wheeler DL et al. Database resources of the national center for
biotechnology information: 2002 update.Nucleic Acids Research,
30(1):13–16, 2002.

[16] Slack J, Hildebrand, Munzner T, and St. John K. Sequencejuxtaposer:
Fluid navigation for large-scale sequence comparison in context. In
Proceedings of the German Conference on Bioinformatics, pages 37–
42, 2004.

[17] Chakrabarti K and Pachter L. Visualization of multiple genome anno-
tations and alignments with the k-browser.Genome Research, 14:716–
720, 2004.

[18] Baudis M and Cleary ML. Progenetix.net: an online repository for
molecular cytogenetic aberration data.Bioinformatics, 17(12):1228–



1229, 2001.
[19] Durbin R, Eddy SR, Krogh A, and Mitchison G.Biological Sequence

Analysis : Probabilistic Models of Proteins and Nucleic Acids. Cam-
bridge University Press, 1998.

[20] Spell R, Brady R, and Dietrich F. Bard: A visualization tool for bio-
logical sequence analysis. In2003 IEEE Symposium on Information
Visualization, page 28, 2003.

[21] Leitner T, Foley B, Hahn B, Marx P, McCutchan F, Mellors J, Wolin-
sky S, and Korber B. Hiv sequence compendium 2003, 2003.


