Visualization of the Differences Between Many Genome Sequences
Michael DiBernardo*

Department of Computer Science
University of British Columbia

ABSTRACT Interpreting volumes of sequence data of this magnitude is a dif-
ficult task, and one in which visualization tools would undoubtedly
As high-thoroughput sequencing technology continues to advance,be of use: One need only skim quickly through any introductory
large-scale sequence comparisons are becoming more commontextbook in molecular biology to see that biologists quite frequently
place. There do not yet exist any visualization tools that are ca- reason about sequence properties using sketches and other visual
pable of compactly displaying the differences between thousandsabstractions. While there are many extant sequence data visualiza-
of genome sequences. tion tools, most have been designed with the intention of comparing
In this paper, we take the first steps towards a solution to this a small number of sequences in great detail, and very few allow a
problem by attempting to design a static overview to provide a comprehensive simultaneous overview of thousands of sequences.
detailed summary of the sequence differences between HIV viral  In this paper, | investigate a specific instance of the problem
genomes extracted from two different populations. The key chal- of large-scale sequence difference visualization. The problem be-
lenges that are inherent to the problem of large-scale sequence coming addressed is the comparison of HIV viruses isolated from the
parison are identified and discussed to provide a framework for fur- immune and susceptible populations described above. The re-
ther research. searchers performing this analysis expressed a desire for a single,
static overview that could be used to succinctly describe the impor-
tant aspects of the data in a figure in a journal publication; however,
such an overview would also be extremely useful as a view in an
exploration tool. The major contribution of this work is not an ef-
1 INTRODUCTION fective solution to this problem, but it has the benefits of identifying
the primary challenges in designing such an overview and of sug-
The publication of the first draft of the human genome sequence gesting possible directions for further research.
was rightfully considered to be a milestone event in the history of ~ Before tackling this problem, however, it is beneficial to have a
molecular biology. In the five years that have passed since then, general awareness of the work that has already been done in the
much work has been done to interpret this data so that it can befield of biological sequence data visualization so that we might
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leveraged to develop new diagnostics and therapies. . identify approaches that are particularly effective. This related
However, as high-thoroughput techniques continue to improve, work is discussed in the following section. | then provide a more
there is an increasing focus on retrieving and analyzingtiple detailed description of the problem at hand in section 3. Section 4

copies of a genome sequence from specific population or individ- describes the proposed solution, and sections 5 and 6 discuss the
uals from a species, instead of sequencing a single ‘consensusimplementation and the evaluation of this solution. The concluding
genome to represent the entire species. For example, the field ofsection summarizes the strengths and weaknesses of my approach
pharmacogenomics is concerned with examining the particular ge-and identifies the central difficulties that researchers will need to

netic inheritance details of a patient in order to develop a custom address in order to construct an effective visualization tool for high-
treatment protocol for that patient. Another application is the com- volume sequence comparison data.

parison of differences between different gene versionalletes
across human populations: the recently completed HapMap project
sequenced the genomes of 270 individuals across four populations? RELATED WORK

with the purpose of catalouging as many of these differences as_ L . . . .
possible [2]. Visualization tools for biological sequence analysis are typically

The space of useful large-scale analyses of this sort is not re- US€d to browse sequenagnmentsor sequencéeatures Align-
stricted to the comparison of human genomes. Amidst the large MeNt viewers are used to identify features that are shared among
population in Africa that is exposed to AIDS, there exists a small S€duénces for the purposes of generating an annotation, while a
subpopulation that appears to be completely immune to the diseasef€ature viewer is used to explore and modify a mature sequence
Researchers at the British Columbia Genome Sciences Centre hav@nnotation. . . )
isolated thousands of HIV samples from both immune and suscep- A Séguence alignment can be viewed as a relation among two
tible populations and have sequenced the genomes of all of these vi-2 more biological sequences that maps each nucleotide or amino
ral samples. The question that they seek to answer is if the viruses2€id in & sequence to a nucleotide or amino acid in all other se-
in the immune population differ genetically from the viruses iso- 9uences in the set. If one sequence contains a contiguous segment
lated from the susceptible population. This analysis is being done Of nucleotides or amino acids that another does not, this difference
by comparing each sample against a single canonical HIV sequenceF@n be interpreted as amsertionin the first sequence, ordeletion
and determining what the differences are relative to this canonical from the second sequence. The basic representation of a multiple

sequence sequence alignment across two or more genomes is a textual de-
] scription of the alignment, as in Figure 1. Insertions and deletions,
*e-mail: mddibern@cs.ubc.ca or indels are identified by the use of gap character usually a

', Alignment viewers essentially take a textual alignment repre-
sentation like the one in Figure 1 as input, and produce a visual
representation or summary of the alignment.

A sequence feature is merely a region or attribute of interest in



Human DSEUCZ M-ATKAVCVLEKGDGPVQGIINFEQKESNGPVKVWGSIKGLTE-GLEGFEVEEFGDNTAG~
Bovine DSBOCZ --ATKAVCVLKGDGPVQGTIEFEAKG--DT TGSITGLTE-GDHGFHEVHQFGDNTQG-
Swordfish SODL V-L-KAVCVLRGAGETTGTVYFEQEGNANAVGKGIILKGLTP-GEHGFEVEGFGDNTNG-
Drosophila DSF V-V-KAVCVING-D-AKGTVFFEQESSCTPVKVSGEVCCLAK-GLEGFEVEEFGDNTNG-
Maize SDMZ M-V-KAVAVLAGTD-VKGTIFFSQEGDC-PTTVTGSISCGLKP-GLHGFEVEALGDTTNG~
Yeast DSBYC V---QAVAVLKGDAGVSGVVKFEQASESEPTTVSYETAGNSPNAERCFEIHEFGDATNG-

Figure 1: An example of the raw output of a multiple sequence
alignment program (taken from the clustalw documentation)
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Figure 4: The Synplot alignment viewer

) ) KBrowser [17] is essentially a feature viewer that compares
2.1 Alignment Viewers the features of multiple genomes simultaneously; however, align-

There are a variety of tools available to visualize sequence align- Ment data (in the form of percent identity plots) is also displayed.

ments, although many of them share common features. The NCBI KBrowser unfortunately lists all of the data tracks for a single

MapViewer [15] serves as a browser for genome assemblies, which9enome in a continguous block, instead of interleaving the tracks
are essentially collections of alignments of sequence fragmentsfor €ach genome (Figure 5). This makes it very difficult to compare

used to infer the entire genome sequence. Of particular interestSPecific sequence features to one another. Displaying indels as grey
to this project is the Evidence Viewer (Figure 2) that identifies se- ba_nds that stretch across all tracks is effgctlve, but bec_:ause substiti-
quence features that have been inferred from alignments of known tutions are only shown across one track it appears as if they are less
messenger RNAs to a genomic region. Sequences are representeffPortant than indels, which may or may not be the case depending
as lines, and raised ‘blips’ in the lines are used to identify mis- ©n the problem being addressed.

matches. The interface is rather spartan, and no overview is pro-
vided.
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Figure 2: The NCBI Evidence Viewer

The VISTA alignment viewer [9] is a more full-featured tool that Figure 5: The KBROWSER alignment and feature viewer
is used specifically for processing raw alignments. A sliding win-
dow of a preset number of nucleotides is moved a nucleotide at a ECRBrowser [11] is a multiple alignment viewer that seeks
time over the alignment, and the percent identity of each sequenceto emphasize evolutionarily conserved regions across vertebrate
with respect to some ‘base’ sequence is computed in that window. genomes, regardless of position or function. These regions are iden-
The percent identity is then plotted as a line graph (Figure 3) so tified by shared peaks in PIP plots and are outlined with a box when
that one may quickly identify highly conserved and highly diver- detected by the software (Figure 6). Such an ECR can then be easily
gent regions. Colour is used to distinguish coding and intergenic extracted and viewed in more detail. Making this particular oper-
regions. Although elegant, this approach does not scale to moreation a fast one is a good design decision, because the extraction
than a handful of sequences. Also, sequences at the top and botef conserved sequence regions is almost always the purpose of a
tom of the display are more difficult to compare than those that are sequence analysis. A chromosomal overview is linked to the main
directly adjacent to one another. view to maintain positional context, and features of sequence re-

Synplot [5] is another basic alignment viewer that relies on gions are again encoded with colour.
percent-identity plots (PIPs) to express sequence differences. How- While the browsers that have been discussed thus far have their
ever, Synplot also explicity represents insertions and deletions asown individual strengths and weaknesses, they all share a common
gaps in the lines representing the first or second sequence, respeciook and feel'. Sequences are displayed as lines, sequence feature
tively. Colour is again used to highlight sequence features, although are displayed on surrounding lines or ‘tracks’, and percent-identity
some spatial encoding is also used to emphasize coding regionslots are used to display an overview of sequence similarity. While
(Figure 4). this homogenuity makes it moderately difficult to select one tool
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Figure 8: The SockEye alignment viewer
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U e e Calorades T e e s the alignment (Figure 9). However, this results in frequent line
- = L e crossings that usually have little or no significance in the structure

of the alignment, giving a general impression of visual clutter. Also,
Figure 6: The ECR browser and its visual components (taken from effective comparisons are still easier between adjacent sequences,
http:/ /ecrbrowser.dcode.org/) because one does not have to follow the arcs as far.

over another, it does suggest that there are certain types of displays
that biologists are very familiar with when it comes to sequence
analysis.

However, some alignment viewers have sought to break the mold
in an attempt to overcome the inherent weaknesses of this approach.
SequenceJuxtaposer [16] uses an ‘accordian drawing’ rubbet sh
metaphor to display a large number of sequences at one time while
maintaining some overall context (Figure 7). Regions of interest
can be identified across some number of sequences by drawing a
box around them and ‘stretching’ them so that they are made larger
with respect to their surroundings. Nucleotides are represented as
colour-coded boxes, and when they are large enough in the display,
their single-letter codes are rendered as text within the box. Indels
are encoded as greyed-out boxes in the sequences that do reot shar
the insertion. The rubber-sheet metaphor permits the display of a
very large number of sequences at a very high resolution. Figure 9: A biological arc diagram representing a multiple sequence

alignment across four sequences

— .|
Some researchers have also applied dimensionality reduction
techniques to alignment display. For example, Tsalenko et al. were
interested in classifying certain sequence divergences with respect
to their ability to be used as markers for predisposition to diabetes
| [14]. Thus, instead of using a standard display method to iden-
tify potential divergent regions of interest, they instead enumerated
all combinations of computationally identified sequence differences
) and tested the efficacy of each such combination when it was used
Figure 7: SequenceJuxtaposer as a marker for disease. For instance, if a particular collection of
SNPs was found only in the diabetic population, one would strongly
SockEye [10] is a 3D alignment viewer that differs from the 2D expect that an undiagnosed individual that also carries these SNPs
alignment viewers discussed thus far by using the third spatial di- in their genome sequence would be highly predisposed to diabetes.
mension to encode the significance of the alignment at a given re- This concept was implemented as an assessment of ‘information
gion (Figure 8). However, the perspective view makes it difficult gain’ for each combination of sequence differences, and a visual-
to compare the thin vertical bar charts that represent the alignmentization of the information gain provided by each combination was
quality, and the fact that they are rendered with transparency only ysed to select the best markers.
amplifies this problem. No attempt is made to use the third dimen-
sion to alleviate the difficulty of having to lay sequences side-by-
side for direct comparison; sequences at the top and bottom of the
layout are still much more difficult to compare against each other Feature viewers differ from alignment viewers in that they are more
than those that are directly adjacent. concerned with displaying the unique features of a sequence or a
The biological arc diagram [20], known as a BARD, was devel- set of sequences than they are with displaying differences between
oped to reduce the difficulty of comparing sequences that are notthe sequences in the set.
laid out directly adjacent to one another. Arcs are drawn between Caryoscope [3] and the Progenetix.net browser [18] are sim-
aligned bases in line representations of the sequences that composgle feature viewers that allow a high-level overview of an entire

2.2 FeatureViewers



genome with respect to a single quantitative variate of interest. The delivered via dynamically generated HTML, and so any changes to
genome is segmented into chromosomes, and coloured bar charts view require the page to be refreshed. Because most browsers
on each side of a chromosome indicate the value of the variate in thewill return focus to the top of the page after a refresh, adding or re-
contained region (Figures 10 and 11). Caryoscope allows the depic-moving a feature track requires that users reorient their view before
tion of any sequence feature that can be described in a standard foreontinuing with their exploration.

mat known as GFF (General Feature Format); Progenetix.net dis-

plays the relative sequence loss and gain in tumour sequences with | .. ¥ oo SNPs Chromosane 3
respect to the ‘healthy’ chromosomal sequence. Neither browser Genes Repeats
allows a more detailed view, apart from zooming in on an indi- :
vidual chromosome. | evaluated the freely-available Caryoscope F2e.1
software myself, and although it is elegant, the inability to provide
more detail is frustrating, and performance degrades heavily when szz
using even reasonably-sized datasets (such as those provided on the roh.1
author’s website). PE2.G
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Figure 10: The Caryscope single feature viewer P
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Figure 12: Overview (above) and SNP feature track view (below) of
the ENSEMBL map viewer
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The SNP Launcher [4] is a feature viewer that provides very de-
tailed information about the quality of SNP assignments in a vari-
|13l ety of genomes. All of the expressed sequence tag (EST) data that
o was used to infer the existence of a particular SNP is visualized
spatially as a straight line beneath the canonical genome sequence.
Figure 11: The Progenetix browser The relative amount of sequence evidence is depicted as a bar chart
above the line that represents the genome. Clicking on a particular
The ENSEMBL map viewer [6], the UCSC Genome Browser EST or genome region will open a window with a textual align-
[7], and the open-source GBROWSE [13] are track-based feature ment view; unfortunately, there is no way to rearrange the order of
viewers that share many similarities. All provide a chromosome- the sequences presented in this detailed view. Further, SNPs in low-
level overview of the genome being examined, and allow multiple and high-covered regions are distinguished by the case of the char-
levels of zoom in the secondary view (Figures 12, 13, and 14). The acter that represents the nucleotide, a difference that is difficult to
user can add or remove feature tracks by manipulating a featurepick out preattentively. SNPs in coding regions are coloured red, a
list. Glyphs on tracks are usually hyperlinked to specialized views: common practice in many viewers, but the saturated red is hard to
For instance, clicking on a glyph that represents a SNP will open distinguish from the black background. There is no single overview
a window that displays the list of known organisms that share the that can be used as an entry point to the view depicted in Figure 15:
SNP, and any potential physiological differences that have been at-One must specify a region of interest via a textual search query in
tributed with it. These viewers provide a great deal of detail thatis an HTML form. Finally, the windows that are opened by the ap-
easily interpreted for a small number of sequences (four or five on plication are very difficult to close: A small square button in the
an average-sized display), largely because most of the data is spalower-right of the window must be clicked, which is nonintuitive in
tially encoded. The disadvantage of these viewers is that they arealmost any user interface.
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Figure 13: The UCSC genome browser
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Figure 14: The GMOD GBROWSE feature browser

Artemis [12] and Apollo [8] enable the user to access stagger-
ingly detailed views of a single genome annotation. Apollo (Fig-
ure 16) provides more overviews than Artemis, such as depictions
of high-level cross-chromosomal comparisons between vertebrate
genomes (in this example, human and mouse), while Artemis pro-
vides a very detailed view that shows, among other things, all six ) o ) )
open reading frames of the genome sequence at the region of in_munecohort, and is Composed of individuals who al’(_e |nfecteq with
terest, line-plots of GC content, hydrophobicity plots, and splicing H!V and who do not demonstrate symptomos of having the disease.
and SNP patterns (Figure 17). In my (admittedly limited) expe- Multiple HIV viral samples were extracted from each individual
rience working in genetics wet labs, this information is extremely in each population. These samples were processed to remove the
useful when designing DNA sequence probes or primers that are togenetic material, and each viral genome was sequenced. Each of
interact with the genomic region of interest, and so Artemis can get these viral genomes was then compared to a canonical HIV viral
away with not providing any sort of overview; the intention is that genome sequence to determine the insertions, deletions, and substi-
it will only be invoked when a very specific region of interest has tutions in the sample relative to the canonical sequence.
been identified. The data, then, is a list of changes relative to the canonical se-

It is evident from this survey that certain types of data have a guence. The canonical sequence itselfis about 9300 bases in length.
common representation in many different tools, and that these rep-Bases in the canonical sequence are numbered starting at 1. Each
resentations are thus likely to be familiar to researchers in molecular change is labelled as originating from the susceptible cohort or the

biology. With these considerations in mind, we can move on to a immune cohort. Substitutions are described by the position of the
discussion of the problem and a proposed solution. base in the canonical sequence that was modified, and the letter

code of the base that it was changed to. Deletions are described

by an inclusive range of bases in the canonical sequence that were
3 DISCUSSION OF PROBLEM deleted or missing in the viral sample. Insertions are described by

the number of the base in the canonical sequence at which the in-
The description of the problem that we are trying to solve is not sertion begins, the length of the sequence that was inserted, and the
that complicated. The subjects of the experiment are individuals actual sequence of bases that was inserted. For instance, an inser-
living in Africa. Each subject belongs to one of two populations, or tion of the sequence ACGTT at base 4 means that in a comparison
cohorts The first population is theusceptiblecohort, and is com- of the canonical sequence and a viral sample, the extra sequence
posed of individuals who are infected with HIV and who demon- ACGTT was found in between the viral bases that correspond to
strate symptoms of the disease. The second population imthe  bases 4 and 5 in the canonical sequence. See Figure 18 for a visual

Figure 16: The Apollo chromosomal synteny view



4 PROPOSED SOLUTION

In the previous section, | described the problem and the nature of

the data. Specifically, | identified the variates that are required to

: : . completely describe each of the possible sequence changes. De-

. 1 M A AL A signing a solution to the problem required that | first select a subset
o 24 4 of these variates to display, and then decide how to display them.

4.1 Selection of Variates

Substitutions are specified by a position in the canonical sequence,
the letter of the base that was changed, and the letter that the base
pem B was changed to. For the purposes of the overview, | decided that the
St i i : ; existence of the substitution was more important than the nature of
Eem  an i X - = nS— the change itself; that is, the fact that a substitution occurs at base
T —— 24 is more important than the fact that base 24 changed from an

- — o T adenine to a guanine. Thus, substitution data can be encoded as the
g L A R A A A A probability that a substitution will occur at a given position in the

Tt Tastirny baves 0I5 sl weiie W1 ML TT (igmns MR TTY
Al A i1 Wi ! W

rie
SRR AV A VL A O T R, canonical sequence.
b -, il e s oy sl gshiopmsin gl Deletions are usually specified by a start position and a length.
1110 AR 1 L st ML L 1 s However, in the previous section | described a deletion as an inclu-
L T L : sive range in a sample sequence. This is because for most applica-
Bl A el st e o el tions, the fact that a base is missing from a sequence is more im-
IO DARR G081 0 portant than the fact that the deletion started at particular base. For
instance, if in one sample, bases 10-20 are missing, and in another
. . bases 15-25 are missing, we could make two types of observations.
Figure 17: The Artemis feature browser The first observation is that bases 10-14 and 21-25 are missing 50%
of the time, whereas bases 15-20 are missing 100% of the time. The
second observeration is that deletions originate 50% of the time af-
representation of this insertion; the concept is quite simple, but canter base 14, and 50% of the time after base 19. The latter sort of
be difficult to describe in words. observation is useful when searching for specific ‘hot spots’ in the
The problem is to find a method of visually representing all of genome that are especially prone to being clipped; however, most of
these changes in a single overview, subject to some restrictions.the time the knowledge that a base is frequently removed in a dele-
This overview must be extremely intuitive to interpret, because the tion of some length is more than sufficient. This is because regions
intention is that it will serve as a ‘visual introduction’ to the findings  that are frequently deleted can be assumed to have little effect on
of the study. This suggests that an effective solution would use the continuance of the organism, and thus likely do not contribute to
display paradigms that biologists are used to working with. We any particular function. Thus, | decided to represent deletions with
have seen in the previous section that sequence difference data is single variate: The probability that particular base in the canon-
often laid out on horizontal, spatial ‘tracks’, and that line graphs are ical sequence will be missing in an extracted sequence. Deletion
commonly used to display quantitative data. Abstraction techniques origins and lengths are completely ignored. The actual sequence
such as semantic zoom and glyphing would likely require too much that was deleted is also not considered to be required knowledge.
cognitive ‘overhead’ to decipher for the average reader. Insertions are a difficult case. Both the origin and the length
Data aggregation and other reduction techniques must also beof the insertion are important, while the actual sequence being in-
used sparingly, because difference data quickly becomes uselesserted is perhaps of lesser concern. However, there is no simple
when detail is lost. This is because small changes in biological single-variate reduction that can be used to describe an entire inser-
sequences can produce profound effects; for instance, bett@use tion, and so for every position in the canonical sequence, | chose
DNA bases that code for amino acids are read in triplets, the dele-to display both the probability that an insertion will occur after that
tion of one or two bases is a catastrophic event because it changegarticular base, and the average length of an insertion that begins at
the composition of the subsequent triplets. This is known as a that position. Averaging lengths is a particularly dangerous thing to
‘frame shift’ mutation. Single-nucleotide polymorphisms are per- do, as it precludes the interpretation of length distributions.
haps the most innocuous change that one could imagine, because In summary, the variates that were selected were probability of
they only change the identity of a single base. However, many SNPssubstitutions at each base; probability of deletion of each base, and
have been associated with disease or loss of function in a variety of probability and average length of an insertion occuring after each
organisms, and so even these minute changes are important. base.
A one sentence summary of the ideal solution, then, is a single
overview that is easily interpreted by biologists and that allows for ; ; ;
a detailed description of the changes that occured at each base i#’z Visual Encoding of Variates
the canonical sequence. As discussed earlier, one of the design goals was to encode the se-
lected variates in a way that was immediately familiar to biologists.

1234 56789 As such, the use of line and area charts and the like was preferred
TACT---- - GGCGA to the use of glyphs and other more abstract encodings. An initial
TACTACGTTGGCGA mockup of the proposed solution can be seen in Figure 19.
Because the majority of sequence viewers represent the genome
sequence as a horizontal line, | chose to adhere to this convention;
Figure 18: Raw textual representation of an insertion in a viral sample the position of bases on the canonical sequence is encoded spatially
relative to the canonical sequence. The top sequence is the canonical across thex-axis. Substitution probabilities for each cohort are en-

sequence, while the bottom sequence is the viral sample. coded spatially in the positive-axis, using a line graph with two



The GFF is a rigid, plain-text, human-readable file format that is
used specifically for describing sequence features.

5.1 Challenges Encountered

Several challenges were encountered in the process of translating
the high-level design into software. These challenges and my at-
tempted solutions are described here. The efficacy of the solutions

Figure 19: Mockup of proposed solution. Substitution data is rep- is evaluated in the following section.

resented with line graphs at top of display; insertion data is repre-

'.sented with area and .Iine plots at bottom of display; fieletion data 5.1.1 Lack of Critical Feedback

is represented by gradient bars that double as the x-axis. Genes are

represented by rounded rectangular regions behind the gradient bars. The one lesson that | have learned from working in biology wet-labs

is that science can and often does go completely and horrifically
awry. It is not uncommon for Ph.D projects that have an expected

series to maintain continuity across the sequence. Colour is used toduration of 3 years to require more than double that time to com-
distinguish the two populations; the susceptible population data is plete. Thus, | was not especially surprised when similar problems
drawn in red, while the immune population data is drawn in blue. cropped up throughout the course of this project. Very early on in
The human perceptual system is particularly sensitive to line cross-the design phase, my collaborators at the Genome Sciences Centre
ings [1], which in this context is useful because such crossings in- became extremely involved in their work and were essentially un-
dicate regions where the substitution probability in one population available throughout the duration of the project. Thus, | was forced
overtakes that of the other population. to abandon my original plan, which was to engage in an iterative

Insertions are encoded spa’[ia”y in the negayim(isl Because design process that would involve co_nstant feedback from the re-
insertions are represented by two variates, two data points must besearchers that would eventually be using the software. .
plotted per column for each population. In order to reduce clutter, | used two techniques to attempt to produce a useful solution
the susceptible population data is displayed separately from the im-in the absence of informed criticism. First, | performed cogni-
mune population data. Insertion probabilities are plotted as an areative walkthroughs of how | would use the software as a user of the
chart, which can be viewed as a very high-resolution histogram. system; however, these were somewhat limited in utility given my
Area charts are used to distinguish this display from the line graphs lack of domain knowledge and of the specific details of the project.
that describe the substitution data. Again, colour is used to distin- Second, | requested input from friends and colleagues that | have
guish populations. Average insertion lengths are plotted as a line W_orked Wlth before in the fields Of bl_()lnformatlcs and molecular
chart overtop of the area chart. A textured line is used to ‘soften’ biology. Ultimately, though, there is little that | was able to do to
the effects of the line/area crossings, as they are not informative in €nsure that this tool would be useful to the knowledge workers that
this display and should not draw attention to themselves. The in- requested it. The lack of feedback also drastically increased the
version of one of the plots allows the display of 4 data points per time of development, because | found myself constantly evaluating
column without a great deal of clutter, but admittedly makes it diffi- and re-evaluating design decisions that | could not adequately rea-
cult to compare insertion probabilities and lengths between the two SOn about with my limited exposure to the actual research problem
populations. being addressed.

Deletions are represented with a pair of gradient maps that are
positioned along th&-axis. The top bar represents the susceptible 5.1.2 Lack of Real Data
population, while the bottom bar represents the immune population. .
The lightness of the bar at a given position is used to represent theAnother unfortunate consequence of the project delay was that |
probability that the base at that position will be deleted in a viral Was not able to gain access to the data that my collaborators wished
sample. The gradient bar allows for a compact representation of {0 @nalyze. This was not a large problemin the early stages of devel-
the deletion data, and also serves as a visual anchor foralxis opment, since | was able to do basic testing with hand-constructed
in the display. datasets. Howe\{er, as the project matured, | rgquired larger and

Note that this overview could concievably be used both as a fig- More representative dataset_s to aIIo_w for evaluatlon of the system.
ure in a publication, or as a overview in a multi-view visualization | accomodated for this difficulty in two different ways. First,
tool; a rectangular ‘window’ could be placed in the overview to de- | Wroteé software to produce datasets from probabalistic models

note the region being examined in a more detailed view, and this Of Sequence evolution. When modelling sequence evolution, it is
window could be moved by clicking and dragging the mouse. common to assume that individual mutation events are Poisson dis-

tributed, and that the lengths of insertions and deletions are geomet-
rically distributed [19]. This data was useful in that it represented a
5 IMPLEMENTATION ‘worst case’ in terms of noisiness and density: for example, Figure
20 demonstrates a scenario where the mutation rates are the same
The view described in the previous section was implemented using in both populations, but the indel lengths are longer in the immune
Java 1.4.2. A model/controller/view architecture was adhered to population than in the susceptible population.
even though the current state of the application does not permitin-  However, this did not allow me to evaluate the effectiveness of
teraction: This was done to make future extensions to the softwarethe system when used with real data. To this end, | designed a
as easy as possible. toy experiment based on an existing dataset that could be used as a
After evaluating many visualization toolkits, | decided to use the testbed for the system. HIV genome sequences were downloaded
JFreeChart SDK to implement the line and area charts used in thefrom the HIV Sequence Compendium website[21]. A total of 75
substitution and insertion views. | could not find any existing soft- sequences were downloaded, with 37 isolated from individuals in
ware to create the gradient bars for the deletion plots, and so | im- Kenya, 37 isolated from individuals in Uganda, and 1 isolated from
plemented those myself using the Java2D library. an individual in Ethiopia. Ethiopia and Kenya share a border, but
The data itself is stored in the General Feature Format (GFF), at Ethiopia and Uganda do not; the experiment was to see if the sam-
the request of my collaborators at the BC Genome Sciences Centreples isolated from Kenyan individuals were more divergent from



Figure 20: Display of random data. Each population consists of
5000 samples. Mutation frequencies are Poisson-distributed with a
mean of 20 mutations per sample. Indel lengths are geometrically
distributed with length 10 in the susceptible population (blue, top

Figure 21: Display of substitute dataset. Canonical sequence is an
HIV viral genome sequence extracted from an Ethiopian patient.
Blue/top population is composed of 37 Kenyan HIV sequence iso-
lates, and red/bottom population is composed of 37 Ethiopian HIV

sequence isolates.

gradient) and length 20 in the immune population (red, bottom gra-
dient)

application window is maximized: If this tool was to be used as a
the Ethiopian sequence than the samples isolated from Ugandaninked overview, it would only occupy a small portion of the screen
individuals. In this scenario, the Ethiopian sequence serves as thespace.
canonical sequence, and the Kenyan and Ugandan sequenegs serv  This problem is especially dangerous because of the reliance
as the two sample populations. of the solution on the JFreeChart library. The behaviour of the

Unfortunately, | was unable to acquire a genetic map of the JFreeChart plots is essentially undefined when there more data
Ethiopian sequence, and thus | could not identify what regions of points to plot along a single axis than there are available pixels
the sequence coded for genes; the original intention was displayalong that dimension. Thus, some reduction of the data was re-
gene regions as rounded rectangles as seen in Figure 19. quired to produced a one-to-one mapping of data points to pixels

The sequence data were downloaded as a multiple alignment ofalong thex-axis.
all 75 sequences. The sequence alignments provided by the HIV  The approach that was taken was simple, and less than ideal. For
sequence compendium have been manually curated and are thuall quantities that are displayed in each component, a windowed
considered to be of very high quality. | wrote a Perl script to trans- average was computed and plotted instead of the raw data. For
late this multiple sequence alignment into GFF-formatted data. The instance, in the substutition plot, if the data density is 4 bases to
results of this experiment are discussed in the following section. A 1 pixel, an average of the substitution probabilities across those 4
view of the data can be seen in Figure 21. bases is computed and displayed. It is disconcerting that when this
technique is applied to the insertion length component, this results
5.1.3 Density of Data in_the comput_atio_n_ of an avgragemferagelengths, which is_cer-

tainly not an intuitive quantity to reason about. A comparison of
As discussed earlier, the HIV genome is approximately 9300 basesan averaraged and an unaveraged display can be seen in Figure 22.
in length. Because the width in pixels of the average monitor ranges The extensive drawbacks of windowed averaging are discussed in
from 800 to roughly 1300 pixels, it became evident early in the the next section.
project that each of the positions in the canonical sequence could
not be aSS|gned a display cplumn of even a s!ngle pixel in width. 51 4 Data Distribution
However, this sort of resolution is necessary with the proposed so-
lution in order to display detailed features such as single-nucleotide A comparison between the initial conception of the display in Fig-
polymorphisms. ure 19 and an example of the display of real data in Figure 21 makes

My first attempt at a solution for this problem was to split the it very clear that the mockup made some unrealistic assumptions as
canonical sequence intopieces and to create a separate display to the nature of the data. In the mockup, the data is very ‘well-
component for each segment. These components were stacked vebehaved’ in that it forms smooth, normally distributed curves that
tically and labelled with base pair ranges. However, there is a are easy to follow and compare. However, the tendency of muta-
limit to how many components can be stacked vertically before the tion frequencies to follow a Poisson distribution and indel lengths
length-to-width ratios of the individual graphs become low enough to follow a geometric distribution means that any practical depic-
to make interpretation of the data almost impossible. Figure 20 tion of real data will not be nearly as pleasing to look at. Especially
shows a display witm=4, which | found to be a happy medium difficult is the tendency for indels to occur infrequently in very nar-
when the application window is maximized to occupy the entire row regions of sequence: This results in large, simultaneous spikes
screen. However, there is still the issue that one column of pixels in both the insertion frequency and insertion length in very narrow
of any particular component must represent 3 to 4 base pairs of theregions of the chart. These spikes result in the obfuscation of the
canonical sequence, and this is in ‘best-case’ scenario where theinsertion probability plot by the insertion length plot, which makes



i g ‘ Table 1: Speed of system launch before and after optimization. Mea-
o b sl ol surements are of average walltime, in seconds. 5 trials were run on
" G ; a 1.2GHz iBook with 768MB of RAM. All numbers are with respect
to random dataset displayed in Figure 20

Task Before (s) After (s)
Parsing 15.4 154
Aggregation 0.3 0.3
Dataset Population 96.2 0.02

must be repeated each time the display is resized or otherwise mod-
ified.

The initial prototype of the system was implemented without any
sort of optimization; emphasis was placed instead on keeping the
design clean and easy to extend or modify in the event that op-
timization of certain components would be needed after profiling.
After the first prototype was complete, a performance evaluation on
the random datasets described above (composed of approximately
200 000 individidual change events) showed that the system was
painfully slow in both the initialization and rendering phases.

The computational bottleneck in the initalization phase was iden-
tified as being the transfer of the aggregated data into the JFreeChart
dataset objects. The JFreeChart data storage library as provided was
not specifically designed to handle extremely large datasets, and so
| extended it to add this functionality. A preliminary analysis of the
east African HIV data described previously revealed that the data
was sparse in many regions; for instance the insertion probability
for most of the genome is 0. Also, data is always accessed in as-
cending order when rendering the plot. A linked list was thus used
to store the nonzero data points, and a pointer to the previously
accessed nonzero list element is maintained as part of the state of
dataset. This makes the initial population of the dataset and the re-
trieval of the data during the rendering process much more efficient:
See Table 1 for details.

The issue of rendering speed was significantly improved when
Figure 22: Comparison of raw data (top) and window-averaged data the windowed averaging technique described in the previous section
(bottom) for the random data display from Figure 20 was implemented, because of the reduction in the number of actual

data points that are rendered. However, the rendering process is still
somewhat slow, requiring 4-8 seconds to redisplay the data when
the interpretation of these quantities extremely difficult, and addi- the display window is changed.
tionally make it hard to compare indel lengths and probabilities that
are relatively small compared to the largest data point in the plot.
There is also a tendency for every third residue in a coding regionto 6 RESULTS
experience a heavy substiution rate because the redundancy of the
genetic code means that such mutations will generally not result in In order to evaluate the strengths and weaknesses of the system de-
a change to the translated amino-acid sequence, and so the substpcribed in the previous two sections, a total of four scenarios of
tution chart appears very noisy, with frequent spikes that make it use were conceived, using four different datasets. In each of thes
difficult to pick out more salient substitutions (such as those that scenarios, the question to be answered is very simple: What is the
would actually change the encoded amino acid). difference between the two populations with respect to the canoni-

An attempt was made to reduce the difficulty of comparing inser- cal sequence?
tion data by plotting them on a log scale; however, reactions to this  An assessment of the accessibility of the software to individuals
change from my informal correspondents was overwhelmingly neg- with colour-blindness was also performed.
ative. The general consensus was that the log plot ‘homogenized’
the length quantities to such an extent that it made it impossible 6.1 Scenariosof Use
to accurately gauge what those lengths actually were, and so the™

decision was made to leave the linear axes in place. 6.1.1 Finding a simple trend in the first random dataset

A random dataset was generated where both populations had sim-
ilar rates of mutation, but where indels tended to be larger in one
There are four computationally intensive tasks that are performed population than the other. | randomized the selection of the popula-
by the system: Parsing the raw difference data, aggregating thetion with the longer mean indels so that | would not knaygriori

data, storing the aggregated data in datasets that can be used bwhich population | should expect to exhibit the trend. | visualized
the JFreeChart renderers, and actually rendering the data. The firsthis data with and without the windowed averaging enabled. The
three tasks are performed at launch, whereas the rendering procesresults can be seen in Figure 22.

5.1.5 Performance



In both displays, the trend that is most easily seen is that the
red/bottom population more frequently experiences base deletion
than the other population. While the dataset was designed to have
equal mutation rates for both populations, because the deletions in
red population tended to be longer, more bases were deleted or
average than in the blue population, even thoughrtheberof
deletion events was roughly equal. This demonstrates one of the
problems with choosing not to display the probability of a deletion
event; it is impossible to distinguish whether the high deletion rate
in a region was caused by frequent, short deletions, or infrequent
long deletions.

Despite the fact that both insertion and deletion lengths were
larger in the red population, it is not at all apparent from either
display that insertion lengths in either population differ by much.
The reason for this is that each population sustained a single inser-
tion that was extremely long compared to the others in the dataset,
but relatively similar in length to one another. The scale of the in-
sertion length plot is thus adjusted to accomodate for these very
long insertions, and this makes it difficult to distinguish any sort of ©oc
global difference in average insertion length between the two popu-
lations. Also, the insertion length plot is distracting in both displays
because it appears to be an airbrush pattern instead of an actual line
as a result of the irregular distribution of the data.

The substitution plot does not confer much information other
than that the substitution rates seem to be uniform and roughly
equal in magnitude across the whole canonical sequence for both
populations, which is certainly an accurate description of the un-
derlying model.

Finally, notice that the averaged plot smooths away some of the
lines that were present in unaveraged plot. It was not clear to me
if the extra lines in the average plot were actually informative, or
if they were produced as a side-effect of the antialiasing that the
JFreeChart line renderers use.

6.1.2 Finding a simple trend in the second random dataset

A second random dataset was generated where both populations
had the exact same mutation rates and mean indel lengths (Figure
23). These mutation rates and indel lengths were smaller in magni- Figure 23: Comparison of raw data (top) and window-averaged data
tude than those in the previous dataset. (bottom) for random data with equally low mutation rates in both

It is fairly obvious from the both displays that the probability of ~PoPulations
any mutation in both populations is lower than in the previous sce-
nario: The lines in the substitution and insertion plots are closer to
the x-axis, and the deletion bars are relatively dark in comparison. guences were assigned to the blue/top population and the Ugandan
However, because of the density of the data in the lower regions of Sequences were assigned to the red/bottom population. A compari-
the substitution plot, the red population data in the unaveraged sub-son of the unaveraged and averaged views of this data can be seen
stitution display is obscured by the equally noisy blue population in Figure 25.
data that is rendered last. Several things are noticeable in both views almost immediately.
Both populations frequently have a large deletion with respect to
the canonical sequence at the beginning; this is not uncommon, and
is usally a result of sequencing and assembly techniques and not in-
A third random dataset was generated where one population haddicative of an evolutionary difference. Deletions are rare but usually
both a higher mutation rate and mean indel length than the other.occur concurrently, except at around position 2000 where a deletion
Again, a population was randomly selected to receive the high mu- is much more common in the Kenyan samples than in the Ugandan
tation rate. The visualization can be seen in Figure 24. samples. Substitution rates also occur similarly across both popula-

In this case, it is obvious that the blue population has the higher tions, with substitions being particularly rare at the sequence ends.
substitution rate, deletion rate, and insertion frequency. However, That substitutions are rare near the terminal end is not as obvious in
there is still the issue that it is impossible to tell if the higher dele- the averaged view because the overall scale is smaller and the av-
tion rate is a result of longer deletions or more frequent deletions, eraging tends to ‘flatten’ this distribution; this is evidence that the
and again the insertion lengths in both populations are not easy toaveraging does in some way ‘lie’ about the true distribution to the
distinguish from one another because of several very long insertionsuser. Also, the substitution plots in both displays are quite divergent
that expand the scale. at times, which again implies that the windowed averaging may be
producing an unrepresentative oversimplification of the data.

The insertion display holds a few surprises. Insertions happen
infrequently on the whole, but there are several ‘hotspots’ at very
The dataset described in section 5.1.2 was visualized with and narrow regions of the sequence. The unaveraged display actually
without the application of windowed averaging. The Kenyan se- hides some of these because they have a span of less than a few

6.1.3 Finding a simple trend in the third random dataset

6.1.4 Exploring a real dataset
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Figure 24: Comparison of raw data (top) and window-averaged data Figure 25: Comparison of 37 HIV viral genome sequences extracted
(bottom) for random data, where one population has a higher mu- from Kenyan patients (top, blue) and 37 sequences extracted from
tation rate and indel length than the other population Ugandan patients (bottom, red) with respect to a single ‘canonical’

HIV sequence isolated in Ethiopia. Both unaveraged (top figure) and
averaged views (bottom) are shown here.

bases and thus will be rendered only at the whim of the JFreeChart

plot renderer. The averaged view exposes more of these insertions

— particularly obvious examples can be seen around position 700,ulations were generated by the Vischeck online image generator at
and in the last quarter of the sequence — but appears to have obfushttp://www.vischeck.com.

cation problems of its own, because very small insertions that are  While the red curve in the substitution plots in Figures 26 and 27
surrounded by regions with no insertions at all are de-emphasized.are admittedly difficult to see, the displays are by and large inter-
Thus, some insertions that appear in the unaveraged view are nofpretable in all of the simulations. The colour and lightness scheme
visible in the averaged view. This indicates that both displays are should therefore be readily accessible to all users.

blatantly misleading the user in some way, which is a severe inade-

quacy of the system. Also, the sparseness of the insertions indicates

that they could conceivably be represented with some sort of com-7 LESSONS LEARNED, AND FUTURE WORK

pact glyph without producing excessive clutter.

The uncertainty that | was confronted with when using the sys- The objective of this project was to generate an effective overview
tem to perform this task implies that the solution is inadequate for to compare two large populations of genome sequences with respect
any sort of real-world task. The only component of the display that to there differences relative to some canonical genome sequence.
appears to be useful and reliable is the gradient bar that is used toThe overview was required to be easily interpretable by biologists
encode the deletion data. and to provide sufficient detail to allow the recognition of fine se-
quence details such as SNPs.

It should be readily apparent from the previous section that this
objective was not fulfilled. An attempt was made to use ‘traditional’

A colour-blindness simulator was used to assess the useability ofcomponents such as line and area plots in the overview to allow
the tool for users who have various forms of colour blindness. Fig- for ease of interpretation; however, in order to accommodate the
ures 26, 27, and 28 demonstrate what Figure 20 would look like to density of the data being displayed in these plots, some abstraction
a deuteranope, a protanope, and a tritanope, respectively. The simand averaging of the data had to be done, and these transformations

6.2 Accessihility



Figure 26: Figure 20, as seen by a deuteranope.

(1]
(2]
(3]

(4

(5]

(6]
(7]

[8l

tended to eliminate detail and to introduce misleading artifacts into
the display. [9]

In my opinion, the fundamental challenge that makes this a dif- [10]
ficult problem is that the display must on the one hand be easily
interpretable, but on the other hand must accomodate the display of[11]
very dense data with minimal loss of detail. Techniques for deal-
ing with density often involve some sort of semantic encoding that
can abstractly represent a very detailed dimension of the data while[lz]
occupying minimal display area, at the expense of some extra re-
quired effort on the part of the viewer to learn how to interpret
these encodings. | believe that in order to realize the goal of creat-
ing an effective overview for large-scale sequence difference data
the requirement of ‘instant familiarity’ will have to be relaxed so [14]
that a more abstract representation can be used. Such an approach
would be especially effective for displaying insertion data, because
insertions are both the most difficult element of the data to display [15]
correctly, and because they tend to be very sparsely distributed and

thus are good candidates for representation by some sort of glyph
or symbol. [1

The most important thing that | learned throughout the course of
this project is that a good design cannot be produced by a person
working in isolation. If | could go back and change one of my
decisions regarding this project, it would be the decision | made to
work alone. The large amount of time | spent evaluating and re-
evaluating my design decisions would have been greatly reduced[18]
had | been working with someone that | could discuss ideas with.

Figure 27: Figure 20, as seen by a protanope.

(13]

=]

(17]

Figure 28: Figure 20, as seen by a tritanope.
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