
ShadyStats: Visualizing Game Statistics using Hierarchical Parallel
Coordinates

Mike Vlad Cora
University of British Columbia

CS 533C: Information Visualization

ABSTRACT

In this time of blazing fast graphics hardware, surround sound
processors, and oversaturated gaming industry, a video game’s AI
and gameplay are playing larger and larger roles setting it apart
from the rest. Statistical analysis is almost a given when designing
a tuneable AI system. Statistics should be gathered throughout the
development cycle: both during experimentation with different
algorithms and gameplay mechanisms, and during feature
development and final bug fixing. The ShadyStats is introduced,
utilizing hierarchical parallel coordinates to visualize a game’s
multi-dimensional statistics.

Additional Keywords: multi-dimensional statistics, parallel

coordinates, dynamic queries, video games.

1 INTRODUCTION

In this time of blazing fast graphics hardware, surround sound
processors, and oversaturated gaming industry, a video game’s AI
and gameplay are playing larger and larger roles setting it apart
from the rest.

Probability and randomness are the two pillars of an interesting
video game AI, which does not become repetitive, predictable and
dull. In this kind of approach to game design, the probability
knobs become the de-facto tuneable values used to guide the game
play experience. The upside of this approach is that it delivers
often surprising, unpredictable behaviour that has long
replayability value, and feels more human. This is a bold
statement, but since most human actions are influenced by so
many different factors, one can say we’re basically random, with
various skill and probability knobs adjusted. A human would
never play a game exactly the same every time, and neither should
the AI.

The flip side of probability and randomness is how to measure
that in general, the AI is behaving how the designers intended.
This is hard since the variety of behaviour has just exploded by
adding a mere few dice rolls in the mix. Such AI has to be
evaluated by gathering a lot of statistics over time, and analyzing
the trend lines, outliers, and relationships between different
dimensions. They should be gathered throughout the lifecycle of
the game: while experimenting with different algorithms,
prototyping different gameplay features, and during actual
development and final bug fixing. An info visualization tool to
facilitate the interpretation of these statistics can only have a
positive effect on the final quality of the game.

1.1 Dataset

The dataset used was generated from an over-the-top arcade
soccer video game, where the rules of soccer are greatly relaxed.
It includes statistics from about 2400, 5 minute, AI vs. AI games

played at six different dates over the span of the last 2 months of
development, consisting of 15 dimensions (ie. shots, goals,
passes), times 2 for Home/Away. That would make 2400 games *
15 * 2 = 72,000 numbers, a pretty modest dataset, but still large
enough to overwhelm an Excel spreadsheet.

Having designed and implemented the AI system which generated
the dataset during this past year, I have a fair bit of expertise with
the domain, however, I have never done any sort of statistical
analysis (and even less multidimensional analysis).

1.2 Tasks

The ShadyStats addresses the following overall goals, and is
intended for a variety of professional roles involved in the
production of a video game. It aids in the statistical analysis of
multi-dimensional data gathered through the game’s development
cycle, with the following goals in mind:

• Clearly show correlations between different metrics (ie. # of

shots should hopefully be positively correlated to # of goals).

• Help detect bugs by highlighting outliers and abnormal

differences between selected dimensions. For example there
may exist subtle bugs in the formation and positioning code
and/or tuning parameters that can lead to differences between
the Home and Away teams, giving one an unfair advantage
over the other. A lot of times, these differences are not
caught by play-testers, or their causes are hard to pinpoint.

• Help with tuning a balanced progression through difficulty

levels by mapping it to the different dimensions. AI skill
tuning continues to be a difficult challenge that a large
number of games fail on, especially since tuning and
balancing is often left to the very end of a mad, deadline
driven development cycle (not always though). Anything that
would hasten this process would improve the quality of the
final product.

• Mapping the data to the time it was recorded should provide

an interesting visual history of the AI implementation and
tuning. In addition, bugs and undesired behavior would be
easy to spot as soon as they are introduced, with a “base-line
locking” feature: the interface would allow the user to save a
snapshot of good statistics, against which future data samples
can be compared, highlighting any differences.

• Aid communication with the publisher throughout the

lifecycle of the project. This is a more nebulous goal of
presenting an alternate method for information flow,
especially across language barriers.

2 RELATED WORK

The information visualization technique that I thought would be
suitable for addressing the tasks above was hierarchical parallel
coordinates. Although confusing at first, parallel coordinates[1]
can be an effective way of quickly displaying a large number of
records across many dimensions. There are two main downsides
to using parallel coordinates, the first one being that displaying a
line for each record across all dimensions can lead to a lot of
clutter, fast. And the second being that dimensions closer together
on the display are the easiest to compare, with relations between
dimensions far apart having little chance of being discovered.

The XmdvTool[7] hierarchical parallel coordinates[2] C++
implementation addresses the first problem very nicely, by
aggregating the data into cluster trees, then displaying a shaded
band of colour representing the extents, around the solid mean
line. It implements a variety of other visualization and navigation
techniques in addition to parallel coordinates. For the purposes of
the ShadyStats, I only used the hierarchical parallel coordinate
component, as described in section 3.2.

In order to somewhat address the second problem of parallel
coordinates, a second visualization system, namely a scatter plot
is used to augment and get more detailed information than the
aggregated clusters. I expect the clusters to be most useful most of
the time, and zooming in all the way to the individual record level
to only be useful for very sparse queries, or for investigating
outliers. The graphing component used is ZedGraph[8], and is
described further in section 3.3.

Another tool I wanted to evaluate was the ILOG Discovery
Preview[11], but was unable to get their free license to run on my
computer. It is implemented in Java, and seems to contain a lot
more features than I would need, so Xmdv seemed like (and was)
the right choice.

The dynamic queries, filtering, data linking and zooming
techniques used in the ShadyStats have been well researched and
covered in the information visualization field [5][6]. My
contribution is more to the gaming industry, attempting an
academic approach to developing fun. In my three and a half years
in the video gaming industry, I have yet to see statistics
visualization being involved in the development cycle of a video
game. This may be due to the games I have worked on (car racing
and soccer). I imagine that the teams in charge of real time
strategy, or simulation games (ie. SimCity) are probably knee
deep in statistical analysis. However, a visual analysis tool would
be beneficial for any type of game, since everything that can be
measured has the potential to be useful, when presented correctly.

3 SHADYSTATS

The ShadyStats is meant as a highly interactive, easy to use, yet
very informative live exploratory tool that gives feedback after
every update made to the viewing parameters. All different
components are linked live and update depending on the
clustering, filtering, and other view options modified. All view
parameters can be saved in different “View Canvases”, which can
be switched at any time.

3.1 Features Implemented

The following features have been implemented and will be
described in more detail:

• Maintains history of datasets for easy comparison throughout

the development lifecycle.
• Uses the hierarchical parallel coordinate implementation in

XmdvTool[7] for high-level trend overviews.

Figure 1: The ShadyStats, with a filter on number of goals and
number of hits, displaying 6 datasets from different dates.

• Generate detailed scatter plot graphs on demand, using
ZedGraph[8], a very well written and documented C#
charting library. I highly recommend it.

• In depth, fully controllable clustering and filtering of the
information.

• Save all filtering, clustering, graphing and view settings into
different “View Canvases”, for fast reproduction of
visualizations.

The solution is implemented in Visual Studio.Net, for several
reasons:
• XmdvTool is a C++ application.
• ZedGraph is a C# library.
• C# and C++ play very nicely together.
• C# is very UI friendly, and has a fast development

and turnaround time, without getting bogged down in
details not pertaining to implementing the solution.

• I have less (and outdated) experience with Java.

3.2 Hierarchical Parallel Coordinates

Hierarchical parallel coordinates was chosen as the
information visualization technique to communicate the
large amount of multi-dimensional statistics. This
technique is described in [2] and implemented in
XmdvTool[7], which is a stand-alone C++ Exe
demonstrating various other multi-dimensional
visualization techniques.

Since too many people seem to like Microsoft bashing, I feel that
I must take a bit of space to commend Microsoft on a job well
done with the .Net framework, and Managed C++. Exposing the
hierarchical parallel component implemented in XmdvTool to C#
was a breeze, with the development environment giving me all the
tips needed to do the job. I did not even have to consult the
Google oracle, nor the Visual Studio Help. I have had fairly
extensive experience with C++ and C# individually, but have
never brought the two together, and I never imagined how
seamless the interoperability would be.

The lengthiest task was deciphering the structure of XmdvTool,
and isolating the relevant pieces. It was written using Tcl/Tk[6]
user interface scripting system, so the tool was relatively well
separated architecturally between a GUI layer and a back-end
layer, however it makes use of a lot of global data pointers which
become a problem when exporting functionality intended to be
encapsulated and self-contained. This remains a problem, and an
application can only have one Xmdv parallel coordinate control
per application, since it makes use of global data pointers, and
some nasty stomping issues can occur otherwise. Future work
would be encapsulating all the currently global data pointers into
the Managed C++ control, so multiple instances are possible.

3.2.1 Clustering

The automatic clustering performed by XmdvTool was not well
suited for this application, since it did not take into account pre-
existing domain knowledge. There are specific dimensions in this
case that make sense to cluster under, namely the dataset,
difficulty level, and side being the top three. Automatic principle
component analysis ignores this, and creates “meaningless”
clusters that would not help with the tasks described in section
1.2.

The clustering is simple hierarchical “binning” based on the
dimension corresponding to the given tree level. For example
clustering by dataset would create six clusters by aggregating the
min, max and means of all the child clusters, with the individual
games being the bottom-most single entry, leaf clusters with
min=max=mean, and no children. Any number of dimensions can
be added to the clustering tree hierarchy (assuming infinite RAM
and processing power), however only a few make the most sense,
namely dataset, difficulty and side. Other dimensions could be
added through the interface, and used for example to determine
what makes high-scoring games different from low scoring
games, by adding goals to the cluster list.

Figure 2: The cluster tree (left) corresponding to the settings
on the right.

I also found the brushing tree
navigation technique
implemented in XmdvTool
difficult to use for the specific
tasks mentioned. I can see how
it is useful when exploring for
relationships in an unknown
dataset, however it was an
unintuitive exploration
technique for viewing details
from explicit, known data
viewing “angles”. The
simplified solution is to simply
select the tree level that
corresponds to the level of detail
desired. For example selecting
Side above would show (2 *
num datasets) number of mean
lines, since the Side is a child of
Dataset.

Figure 3: Xmdv Structure-Based Brushing

3.2.2 Filtering

XmdvTool contains a brushing feature for the flat parallel
coordinates component, but this did not function in the
hierarchical shady component. More investigation is needed into
the exact implementation of Xmdv’s brushing mechanism. In the
mean time, a simple query-based mechanism was implemented,
filtering on ranges of different dimensions. This feature is key to

exploring different aspects of the
dataset (for example comparing
how the different team difficulty
levels play against each other). A
logic tree-based filtering system
was implemented that allows any
possible formal logic filtering
statement to be specified through
the GUI.

This solution is a bit clunky and
takes up a lot of unnecessary space.
Different techniques should be
investigated of merging the
different attributes into less
intrusive mechanisms than the
check boxes for Active and
Positive/Negative, making it
possible to display more filters at
once. Also note the lack of labels,
this will defiantly need to be
addressed.

Figure 4: Visual filter specifying the following query:
(Dataset=5 OR Dataset=6) AND
((Side=Home AND Difficulty=Easy To Medium) OR
 (Side=Away AND Difficulty=Hard To VeryHard))

It consists of filter Group nodes that can either OR all of their
child nodes, or AND all of them (see Figure 4). They can be
individually turned on or off, set to positive or negative (not
logical operator), and be recursively nested without limit. The
individual Filters are children of the Group nodes, and apply to
one dimension only, specifying the Range of inclusion. They can
also be individually turned on or off, and set to positive or
negative. The range control is pretty common in the wild, but that
may not have always been the case. One noteable implementation,
famous in the infovis world is in the FilmFinder[5]. The particular
implementation used in ShadyStats is called ZzzzRangeBar[9].

3.3 Scatterplot Graphs

The ZedGraph[8] control written in C# was used to draw the
detailed scatter plot graphs, with an average mean line drawn
through the data. It proved to be very well implemented, full of
features, and superbly documented. It has built-in zooming,
panning, and even CopyToClipboard and SaveToFile
functionality, so pictures for presentations and documents can be
very easily generated.

A third dimension can be shown by binning the data into the extra
dimension and displaying multiple curves, one per bin (ie.
displaying a curve per difficulty level), as shown in Figure 5. Any
number of graphs can be created per view canvas (limited by your
memory obviously), and a very simple and naïve layout is applied,
that can magnify a particular graph by squishing the other rows
and columns. More relevant magnifying techniques are described
in [6]. The Piccolo.NET[10] toolkit may prove useful for this
application, and will probably be explored as a layout solution.

Figure 5: ZedGraph scatter plot, with 4 difficulty curves.

3.4 View Canvases

Please notice that at the bottom-left of Figure 1 there are three
View tabs. All settings pertaining to a view (filters, clusters,
graphs, zoom levels), are saved in a dataview structure, and can be
restored at any time. These views can be saved to a file, and can
be managed with source control, and quoted in bug reports during
development. For example QA may have noticed an anomalous
set of outliers. They can save the particular view canvas and send
it to the programmer responsible, for further analysis (the scenario
is described further in section 4.3).

3.5 Other Features

One can hide and re-order dimensions in the parallel coordinates
component, and also zoom and pan it. This does not however
seem to be particularly useful the way it is implemented at the
moment, so it needs a bit more work.

The views can be saved, and a simple undo/redo system will be
implemented that saves a copy of the dataview structure after each
change to the filters, clusters, graphs or other view parameters.
This structure is relatively small, and a history can be easily
maintained.

4 SCENARIOS

The ShadyStats targets a number of professionals involved in the
production of a video game, and is intended as a communication
aid between people with different technical backgrounds, and
roles. First, it will be the AI programmer’s second stop when
verifying that code does what is intended (first stop being the
“breakpoint” in their respective development environment). The
game designer will use it to measure and balance different game
design features and difficulty settings. It can also become part of
QA’s regression cycle to make sure that the game is not broken or
unbalanced inadvertently while fixing other bugs. And finally, it
can be used by producers and managers as a communication aid
with publishers.

All of the following scenarios are semi-fictitious, and would have
been fully applicable if the ShadyStats was available earlier. They
were created based on analysis of the real datasets (with 20-20
hindsight of course). The ShadyStats can be tailored and
integrated into the development cycle to facilitate these kinds of
discoveries early.

4.1 AI Programmer Scenario

The AI programmer has made some recent changes to formation
positioning and passing code. A good baseline tuning has been
established a week prior and stats were gathered. He wants to see
if his recent changes could have introduced any imbalances when
compared to the baseline.

The ShadyStats maintains a history of previous datasets, so the
baseline is already in the list. The new dataset is loaded, and
selected from the Datasets checklist along with the baseline
dataset. Filtering and highlighting options are set for emphasizing
differences between datasets (rather than comparing between
different dimensions).

Things look alright at the lower difficulty levels; however the new
passing code caused them to pass more times at the higher
difficulty levels when compared to the baseline, apparent when
aggregating the parallel coordinates based on difficulty level.
Another apparent change is that the other team's pass intercepts
shot up also, reducing the effectiveness of the offensive gameplay.
The user selects the # of passes, and pass intercepts dimensions
and creates a scatter plot to get a better view of the relationship.

The following pictures do not represent this particular scenario,
but provide an example of an analogous scenario of comparing
different datasets.

a)

b)

Figure 6: Difficulty level clusters: each line represents the mean
of the cluster aggregating every game played at that difficulty
level, and the shading highlights the distribution’s mins and
maxes. (a) is an example of unbalanced difficulty levels, and (b) is
an example of a more balanced tuning.

4.2 Game Designer Scenario

Tackling a player to get the ball is so not soccer. This type of
behavior has no place on the real playing field for good reason,
and the rules discourage it. However this is what makes it all that
much more fun, so it is a must in the game, but we cannot stop
gameplay and award a red flag because it would interrupt the
flow. Since taking an opponent out of play creates too much
opportunity, there needs to be a penalizing factor, a detriment. In a
well designed game, every such advantage should have a
balancing disadvantage.

So the game designer decides to try awarding the other team a
powerup that compensates them for being so rudely treated. The
programmer said he hooked up the rule, but who knows with these

programmers. It sort of feels right, but what does the ShadyStats
say?

Plotting a graph of Fouls on the X-Axis, Goals on the Y-Axis, and
grouping by Difficulty (resulting in four overlaid curves), clearly
shows a negative correlation between Fouls and Goals (figure 5).
So the more Fouls a team commits, the less likely they are to
score, especially in higher difficulty levels, where tactics become
more important than inelegant brute force. So the mechanism of
awarding powerups to the offended team worked.

4.3 QA Scenario

There has been a decent baseline tuning established earlier,
everything is practically bug free, but the darned AI programmer
keeps wanting to “make it better”. Well let’s see if he broke
anything. Loading the latest statistics that where gathered into
ShadyStats and comparing it to the previous dataset should settle
it. Aha, what’s with the anomalous spikes, dumb programmer
screwed it up again!

a)

b)

Figure 7: Anomalous spikes found when comparing datasets.
The spikes on the right correspond to a real, but elusive bug that
occurred. It was eventually fixed of course, but with the
ShadyStats, it would’ve been discovered immediately.

5 EVALUATION

I would say that the hierarchical clustering parallel coordinates
technique applies very well to the domain of video game statistics
analysis. The fact that three issues have been quickly identified
with the test datasets highlights the ShadyStats’ usefulness. In
addition, the tool addresses all of the tasks laid out in section 1.2
at least to some extent, and applies to the scenarios described in
the previous section. It was good to see that the trends showed by
the ShadyStats correspond to the behaviour intended during
development. There was no way to formally prove this without
the ShadyStats, and a lot of emphasis was placed on the “feel of
the game”. Granted, the feel of the game is just as important (if
not more) than nicely balanced curves, but the tool adds a
concrete viewing window into the overall behaviour, and provides
evidence during what were previously “shoulder shrugging”
moments: yes, I guess it works.

The key benefits are the great flexibility allowed by the filtering,
clustering, dynamic queries, and immediate feedback on all

manipulations to the “viewing window”. The view canvases are
also greatly beneficial for storing certain views that highlight a
particular aspect of the data.

There was no time for user evaluation before the deadline of this
project, however this will be accomplished in the near future, and
work on this tool will continue. Please note that there is nothing
video-game specific in this tool. Everything is data driven, and it
could easily be applied to any other multi-dimensional data set.

5.1 Strengths

The tool addresses all of the tasks in section 1.2 at least to some
degree:
• Shows correlations, trends and relationships through both the

high-level parallel coordinates component, and the more
detailed scatter plots.

• Helps detect bugs by easily comparing between datasets, as
described in 4.3.

• Helps tuning a balanced game, as highlighted by figure 6 and
scenario 4.2.

• Shows trends across time, by plotting various measures
against the dataset. Please notice in figure 1 that the number
of fouls decreases as the dataset ID increases, meaning that
the AI was tuned to be more “clean” playing during
development.

• The SaveToFile feature of the ZedGraph was a pleasant
surprise that can be used to generate pretty pictures for
reports, presentations, and what not.

5.2 Weaknesses

The main deficiency of the ShadyStats is its use of coloring. There
wasn’t enough time to customize it properly, and the default
hierarchical cluster coloring of Xmdv does not apply very well to
the domain. For example when comparing difficulty trends, each
mean line should be a different color, and the aggregate shading
should correspond to that color for easy differentiation. Currently,
all mean lines are drawn in red, making it difficult to distinguish
between them, and the shading color changes with the ordering of
the hierarchy. Changing the cluster ordering (ie. moving Side up
to the top of the hierarchy for example) changes the cluster colors,
even though they represent the same dimension value.

Colors should consistently represent an intended value (for
example home, away, different difficulty levels, or difficulty sets)
through all clustering orders and detail magnification levels. They
should also correspond as much as possible between the parallel
coordinates and scatterplot graphs. All of these change almost
arbitrarily at the moment. Proper coloring implementation will
require a lot of experimentation, and more research done into
some formal color theory.

There is also a severe lack of specific values feedback. Moving
the mouse over any shaded area or line should give specific
information about what it represents: what data set it is from,
whether it is home or away, difficulty level, the corresponding
dimension value, and the min/max of the aggregate shading area.
This may cause problems with overlapping areas, so dynamic
highlighting should be applied to the entire shaded region to give
immediate feedback of what the information pertains to.

5.3 Performance

Performance is decent, but far from perfect. The downside of
implementing the system in the .Net framework is that it instantly

eats up about 40 megs of RAM. It would have been a similar story
with Java though, so this is not a big deal, since memory is cheap.

The Xmdv parallel coordinates component is the biggest
bottleneck at the moment, and it was expected at first that the
problem lies with the OpenGL to C# link. However, loading my
dataset directly into the unmodified XmdvTool.exe also
performed similarly slow while rendering the clusters. It did not
seem to be dependent on the number of clusters displayed,
because even when displaying one shaded cluster, it behaved
almost the same as when displaying 10, and the rendering only
sped up when the total dataset size was reduced.

The entire data loaded consists of 4272 rows * 18 columns, equal
to 76,896 doubles. It seems that the rendering routine in Xmdv
depends on the size of this dataset, when it should only depend on
the amount of data actually visible, so there exists an optimization
potential here. Converting all the doubles to floats will also result
in an instant speed up. We do not need that much accuracy at all,
since most of the dimensions correspond to ordinal values.

5.4 Lessons Learned

This has been a very worthwhile project in terms of the material
learned, and the practicality of the final solution. It was the first
time I have been exposed to alternate visualization techniques
such as the parallel coordinate system, which is very useful for
this particular domain. It was also the first time I have written
Managed C++ interfaces for .Net, and will be able to apply this
knowledge in the future.

I have also come to fully appreciate the importance of color, and
its interactivity issues when displaying overlaid, transparent data.
This is possibly the biggest confusing factor in the clustered
hierarchical parallel coordinates component, and will need more
investigation and work.

6 FUTURE WORK

A lot of work remains to this first pass of the tool. First and
foremost, the “view canvases” need to be fully implemented, and
saved to an XML file that can be checked into source control, and
easily copied and passed around to other people. The undo/redo
system would also be beneficial, and is an easy extension of the
view canvases.

A lot more interactivity was planned with the parallel coordinates
component, where one could hide, drag-reorder the dimensions,
brush and apply filters directly on the dimensions. Xmdv supports
some of this interactivity, so more investigation needs to be done
into what is already implemented, and what needs to be extended.
Better interactivity would eliminate a lot of the clunky list and
buttons UI components interfacing to the dimension visibility,
ordering and clustering. The first priority however was getting all
the necessary features working, and then spending time on
improvements, as the tool is used and feedback is gathered.

Being able to select specific records for highlighting in all of the
visible graphs was also planned but not implemented due to time
constraints. Selecting any data point in any graph, or parallel
coordinate control should highlight all of the record’s
corresponding dimension points in all of the currently visible
controls. This will enable easy investigation of outliers that stick
out from the norm.

Coloring was identified as a huge weakness of the system, and a
considerable amount of time will be spent making it more useful
in communicating the data. In addition, the scatterplot layout
mechanism is a very naïve, quick and dirty implementation. It
would be a useful exercise in investigating the Piccolo.NET [10]
library, and if it could handle the requirements of laying out and
zooming any arbitrary .Net user control.

The filtering interface can also be greatly improved, as mentioned
briefly, earlier. This was again a byproduct of the time crunch,
and different interface techniques will be investigated for a more
streamlined interface.

7 CONCLUSION

The field of video game AI is a very challenging and rewarding
domain. The goal is much more than creating the uber, unbeatable
AI system. It should rather be able to provide challenge for all
skill levels, properly communicate the game’s puzzles to the
player in an interesting manner (through gameplay rather than
explicit tutorials), and be able to surprise with different and
unpredictable behavior. The best compliment an AI programmer
can receive is “it feels human”, which means something entirely
different than “it is so hard”.

AI systems based on probability and randomness achieve a lot of
the goals described above, however they can be harder to tune,
and their behavior may be more difficult to validate and debug.
Overall behavior can only be evaluated and guided through the
analysis of statistics. The ShadyStats has been introduced as a
highly interactive statistical visualization system with
customizable filters, multiple view canvases, hierarchical parallel
coordinates for the high-level overviews, and scatterplot graphs
created on demand for in-depth analysis of particular dimensions,
trends and correlations.

The ShadyStats is meant as a debugging tool first and foremost,
and secondly as communication aid between professionals
involved in the production of a video game, with a variety of
different technical backgrounds and roles: programmers,
designers, QA testers, producers and managers. It does not
however contain anything video-game specific, and can be used as
a general analysis tool on any dataset.

REFERENCES

[1] Edward J. Wegman. Hyperdimensional Data Analysis Using
Parallel Coordinates, Journal of the American Statistical
Association, Vol. 85, No. 411. (Sep., 1990), pp. 664-675.

[2] Ying-Huey Fua, Matthew O. Ward, and Elke A. Rundensteiner,

Hierarchical Parallel Coordinates for Visualizing Large
Multivariate Data Sets, IEEE Visualization '99.

[3] Jing Yang, Wei Peng, Matthew O. Ward and Elke A. Rundensteiner,

Interactive Hierarchical Dimension Ordering, Spacing and
Exploration of High Dimensional Datasets, Proc. InfoVis 2003.

[4] John K. Ousterhout, Tcl and the Tk Toolkit, Addison Wesley,1994.

[5] Chris Ahlberg and Ben Shneiderman, Visual information seeking:

Tight coupling of dynamic query filters with starfield displays, Proc
SIGCHI '94, pages 313-317.

[6] M. Sheelagh T. Carpendale, David J. Cowperthwaite, and F. David

Fracchia, Extending Distortion Viewing Techniques from 2D to 3D

Data, IEEE Computer Graphics and Applications, Special Issue on
Information Visualization, 17(4), pp 42 - 51, July 1997.

[7] XmdvTool: http://davis.wpi.edu/~xmdv/

[8] ZedGraph: http://zedgraph.sourceforge.net/

[9] ZzzzRangeBar:

http://www.codeproject.com/cs/miscctrl/zzzzrangebar.asp

[10] Piccolo: http://www.cs.umd.edu/hcil/jazz/

[11] ILOG Discovery Preview:

http://www2.ilog.com/preview/Discovery/

