
In-browser page popularity statistics visualization

Roman Rudenko
Department of Computer Science

University of British Columbia
201-2366 Main Mall

Vancouver BC Canada V6T 1Z4
rudenkor@cs.ubc.ca

ABSTRACT

Most modern web statistics tools format the data in form of
standalone reports and graphs. While this approach allows the
system to present large amounts of data effectively, it decouples
the statistics from the pages themselves, forcing the users to
perform URL to page mapping as they analyze a report. We are
going to attempt to eliminate this burden from the user by
presenting the simple link popularity data inside the analyzed page
itself.

 1 INTRODUCTION

The traditional web statistics packages separate the analyzed
website from the obtained statistical data. The users have a choice
of many different views, modes, and metrics. However, virtually
all such systems share a common flaw – the information is not
visible right away to the site maintainer. Instead, in order to gain
the general understanding of what destinations are more popular
and where do incoming users arrive from, they have to explicitly
invoke the statistics package and look through views and reports.
We suggest that instead of being treated as separate out-of-band
data, web statistics can be delivered to site maintainers in-band,
inside the normal web page, and offer a (relatively crude)
implementation of this concept.

Obviously, this approach is not capable of, and is not intended
to replace the complicated analytics. Instead, it is supposed to
provide site maintainers that normally do not refer to statistics,
such as artists, editors and writers, with instant basic

understanding of relative importance of different site elements.
One can draw an analogy with disk usage management –
advanced users would prefer to use a separate application to track
down and visualize large files and directories, while novice users
are more likely to prefer to have basic disk usage data and
visualizations inside their normal file browser.

Another important drawback of traditional standalone reporting
packages is that during single page analysis, the user is forced to
maintain a mapping between text of links inside the page and
URLs and page titles that are mentioned inside the report (see
illustration below). If the maintainer does not know the site
structure by heart, this is going to be a time-consuming chore. If
the visualization was presented inside the page, the maintainer
would be able to spend this effort on doing their actual job.

 2 RELATED WORK

The web statistics company Urchin did offer a similar
visualization (fixed-size progress bar style overlays over links).
However, it was not clear from their screenshots whether the
visualization is performed inside the web page itself, or if an
external application is involved. Unfortunately, Urchin was
bought out by Google (and became Google Analytics), and
virtually all marketing information that was available on their
website disappeared. Therefore, I am unable to provide
screenshots of this feature in action.

Illustration 1: The traditional statistics package (AWStats) - data is separated from content

 3 DESCRIPTION OF SOLUTION

The core idea of the solution is to add the statistics server to the
normal “client/web server” model, and modify the client to
request the popularity data from the statistics server when
appropriate. So, the website does not have to be modified at all to
make use of our system.

 3.1 Implementation details

 The statistics are extracted from Apache access logs, processed
and served by a Python script running on Apache. We chose
Firefox as a client browser (as it offers mature and standards-
compliant Javascript support), and modified it by adding the
Greasemonkey extension to allow execution of our custom
Javascript on required pages. Our script uses the SAJAX library
(argument marshaling/unmarshaling wrapper around
XMLHttpRequest) to facilitate parameter passing between client
and statistics server. The script executes when the page is received
from server and rendering is completed. It will extract the links
available in the page and pass them to statistics server. The
statistics server returns hit counts, which are scaled and visualized
as transparent overlays by our script. So, the basic data flow takes
the following shape:

• Client receives a page from the web server

• Client Javascript retrieves the links, and obtains
corresponding data from statistics server

• Client Javascript renders the overlays

 3.2 Data

Originally, we have planned that for every link, we would show
number of requests from current page to target page.
Unfortunately, this idea was not implemented, both due to lack of
time and due to it being not useful on our testing data. Vast
majority of visitors arrive via search engines, with second largest
group coming “from nowhere” (their requests have no HTTP
referrer at all, so they are probably copy/pasting links or using
bookmarks). As a result, the identifiable inter-site traffic data was
not sufficient to demonstrate a convincing trend, and so we
decided to fall back to displaying global hit statistics for every
link instead.

 3.3 Overlay

The hit statistics are displayed in form of semi-transparent
overlays. The overlays are passive and allow no interaction –
clicking one would give the same result as clicking the link
would. The overlay combines semi-transparent red tinting and
progress bar shape. Since we expected that links can differ in
popularity by a couple of orders of magnitude, we scale the
received hit count logarithmically prior to displaying.

Graphical buttons and tabs often have
the same width and are placed side by
side, and therefore positions of progress
bars that overlay them can be easily
compared. Coloured tint is not as useful
in this case, as buttons may have
coloured or patterned backgrounds which
make direct comparisons difficult.

Illustration 2: Our statistics visualization system

Textual links generally have uniform background, and therefore
different intensities of coloured tinting would be easy to compare.
Meanwhile, their lengths could be different, and so comparisons
of progress bar lengths are usually meaningless.

By combining these two features, we get a universal overlay
that performs reasonably on most kinds of links. It does has its
drawbacks, however. First of all, some users perceived intensity
and size of bar fill as two independent variables instead of a single
redundantly encoded parameter.

 The second problem is that the more
frequently visited (and therefore,
important) a link is, the harder it is to
read it, as overlay becomes more and more intensive. One could
attempt to place the tint in background of text instead of over it,
but this approach would offer no improvement for image-based
links, and it is unclear how one would deal with links that already
have a background (CSS is limited to a single background image
per element). Radical colour channel manipulations, such as
displaying the page in grayscale and highlighting links with red,
would also be impossible, as no modern browser offers the ability
to perform operations on colour channels. One could hope,
however, that future SVG filters and blending modes would
provide more compositing options and would allow us to address
this shortcoming.

 4 SCENARIOS OF USE

This visualization is passive and is expected to provide context
for site maintainers. Therefore, the user does not actively use this
visualization, but rather refers to it while performing their normal
duties, such as content editing and restructuring.

 5 PERFORMANCE/SCALABILITY

The current implementation uses HTTP GET request to obtain
the data from statistics server. This means that the total length of
URLs in a request is limited by the maximum length of URL that
the HTTP server and client can properly handle. Unfortunately,
SAJAX library (used for client/statistics server communication)
currently does not provide HTTP POST support for its Python
bindings. So, maximum total length of processed URLs in a single
page is sufficient for a small-scale demonstration, but is too
constraining for real-world use.

The performance of the system appears to be limited mostly by
DOM object creation and response time of the server component.
One can reasonably expect the original page sizes to become an
issue before the overlay rendering lag becomes significant

 6 LESSONS LEARNED

• Not surprisingly, Javascript programming was proved to
be hell once again.

• Currently available browsers are not capable of handling
advanced image compositing modes, limiting the choice
of available visualization techniques. This issue may be
alleviated when browsers would start supporting CSS3
Background module and SVG blending modes.

• First 10% of project takes 90% of expected time. The
remaining 90% of project takes another 90% of alloted
time.

 7 STRENGTHS AND WEAKNESSES

The obvious strength of this project is that does not require the
user to cross-reference URLs and page titles to individual links.
The barrier to access the data becomes much lower, and therefore
the editors and site maintainers that normally do not reference
page statistics are able to take them into account. Most web
writers do not consult traditional statistics tools when modifying
content, but if a visualization would provide them with a quick
idea on which links inside a page are popular and which are not,
they would be able to perform basic reordering and
reprioritization quite easily.

Another strong point of this system is the minimal installation
requirement. Client browser requires an addition of one extension
and installation of a single script, while the web server requires no
changes at all. This would allow the system to work even with
legacy content management systems that cannot be modified
without significant effort, and

The primary drawback of the system is its incomplete and
limited implementation, which prevent it from being useful in real
site maintenance. Poor time management resulted in too much
effort being spent on backend, and too little on visualization itself.

More fundamental limitations of current approach include
possible overlay overlaps if the links themselves overlap, and
general unsuitability for dynamic Javascript-driven websites.
Adding support for tracking creation, destruction and
repositioning of links would require a far more complicated
implementation .

REFERERNCE

[1] Google Analytics, http://www.google.com/analytics/
[2] AWStats, http://www.awstats.org/

	 1 Introduction
	 2 Related Work
	 3 Description of Solution
	 3.1 Implementation details
	 3.2 Data
	 3.3 Overlay

	 4 Scenarios of Use
	 5 Performance/Scalability
	 6 Lessons Learned
	 7 Strengths and Weaknesses

