High Dimensionality

Lecture 9 CPSC 533C, Spring 2004 9 Feb 2003

High Dimensionality

MDS

Themescapes/Galaxies

Cluster Stability

Dimension Ordering

project software

2

MDS

multidimensional scaling

high dimensional space: q dims

embed in much lower dimensional space: p dims often p is 2 or 3

need pairwise distances between points proximity data

minimize error/stress of low-dim wrt high-dim

3

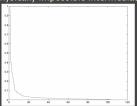
Issues

which distance metric: Euclidean or other?

computation

- · naive: O(n^3)
- · better: O(n^2) Chalmers 96
- · hybrid: O(n sqrt(n))

4


True Dimensionality: Linear

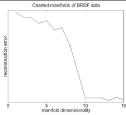
how many dimensions is enough? > 2 or 3?

· knee in error curve

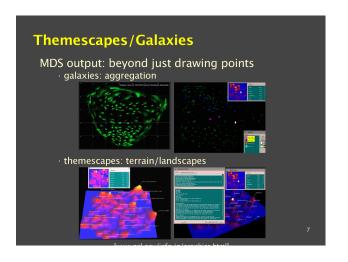
example: measured materials from graphics linear PCA: 25

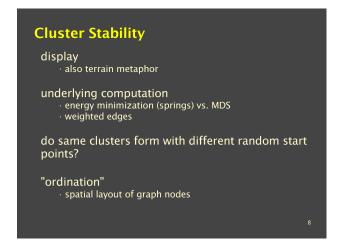
· can get physically impossible intermediate points

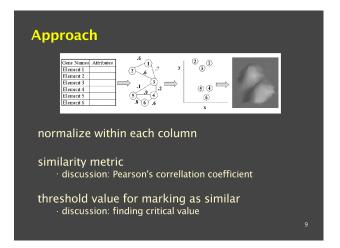
[A Data-Driven Reflectance Model, SIGGRAPH 2003, W Matusik, H. Pfister M. Brand and L. McMillan, graphics.lcs.mit.edu/~wojciech/pubs/sig2003.pdf]

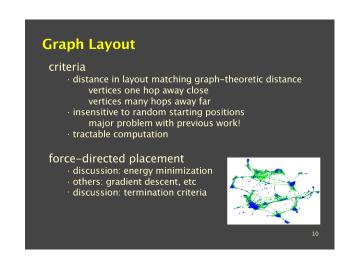

True Dimensionality: Nonlinear

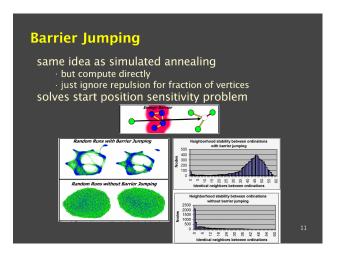
nonlinear MDS: 10-15

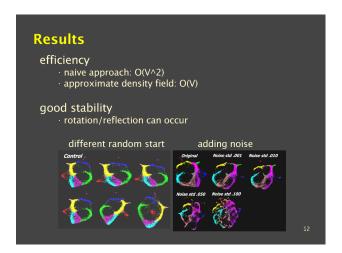

all intermediate points possible


categorizable by people


- red, green, blue, specular, diffuse, glossy, metallic,
- · plastic-y, roughness, rubbery, greasiness, dustiness...




[A Data-Driven Reflectance Model, SIGGRAPH 2003, W Matusik, H. Pfister



Critique

real data

· suggest check against subsequent publication!

give criteria, then discuss why solution fits

visual + numerical results

· convincing images plus benchmark graphs

detailed discussion of alternatives at each stage

specific prescriptive advice in conclusion

13

Dimension Ordering

in NP, like most interesting infovis problems

divide and conquer

- · iterative hierarchical clustering
- · representative dimensions

choices

- · similarity metrics
- · importance metrics
- variance ordering algorithms

optimal

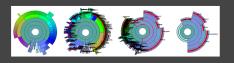
random swap

simple depth-first traversal

14

Spacing, Filtering

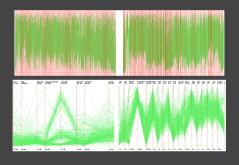
same idea: automatic support


interaction

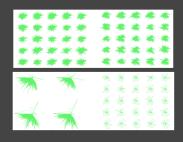
- · manual intervention
- · structure-based brushing
- · focus+context, next week

15

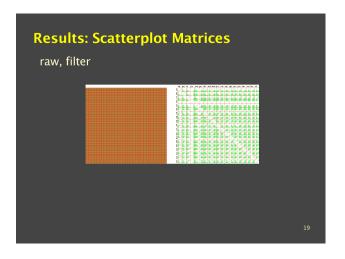
Results: InterRing

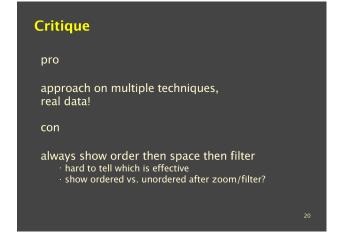

raw, order, distort, rollup (filter)

1


Results: Parallel Coordinates

raw, order/space, zoom, filter




Results: Star Glyphs

raw, order/space, distort, filter

18

Software Tableau: commercial Polaris vtk: scivis dataflow xgobi xmdv data · Klingner's online databases