

### A refresher

- Provide a means for classification of heart conditions
- Idea: use clustering
- Problem: it is very hard to cluster heart pulse interval time series

### Why hard?

- Comparison of time series directly is not useful if they did not all begin at the same time
- Heart data taken over years
- Solution: find a time independent representation

### Solution

- Fourier Transform map the frequency domain
- We can now use our distance measure: NRMSD
- Clustering algorithm: bottom-up

# The Data

- Learned : better if preprocessing done
  Allow the user to provide the time independent representation of the data
  - □ This way the application can be generalized to any kind of data
- Here a single precision FFT algorithm was used

# ClusterTimeSearcher

- Based on Hochheiser's TimeSearcher app
- Takes as input a data file containing both:
  Time series data
  - Representation of the data which will be used for clustering
- Can display the unclustered data



|          | sterTimeSearcher                                 |                                                                                                    |
|----------|--------------------------------------------------|----------------------------------------------------------------------------------------------------|
|          |                                                  |                                                                                                    |
| 47       | 🖬 🗍 Search Search Gase Gasey Weights Frequency 🖛 | Castor Nove - Field any 1 *                                                                        |
| 23<br>24 | <b>La</b> n                                      |                                                                                                    |
|          | And                                              | August 2 (1)-<br>August 2 (1)-<br>August 2 (1)-<br>August 2 (1)-<br>August 2 (1)-<br>August 2 (1)- |
| 24       | <del></del>                                      | AMOUT C MAG<br>AMOUT C MAG<br>AMOUT C MAG<br>AMOUT C MAG<br>AMOUT C MAG<br>AMOUT C MAG             |
| 罰        | <del></del>                                      |                                                                                                    |
| 75       |                                                  | Autor 1 (A.)<br>Autor 1 (A)<br>Autor 1 (A)<br>Autor 1 (A)<br>Autor 1 (A)<br>Autor 1 (A)            |
| 24       |                                                  |                                                                                                    |
| Start 1  |                                                  | (III)                                                                                              |



### Results

- No user input, so it is largely based on intuition
- Somewhat slower than original TimeSearcher
- Poor precision of the original is not good for complex numerical representations.
- Tradeoff: speed vs. precision vs. being able to represent the value on the screen



### Results

- We observe that ClusterTimeSearcher is good for any kind of data, not just heart data
- From experimentation, number of clusters is largely subjective
- To make a useful classification, we need to start with as much info about a condition as we can



## Results

- Clustering heart data based on power spectrum can provide the initial intuition
- Suspicion: from the experimentation on the data used, it is the short, abrupt changes in the signal that hold the most information
- Cluster count too low = we lose the details we are trying to find