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Overview

• What is SciVis?
• Acquisition Methods
• Iso-surfaces
• Direct-Rendering Pipeline
• Vector Visualization
• Challenges
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Visualization Flavors?

• Discrete or
continuous data
model

• Inherent spatial
embedding or a
chosen one?
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Visualization Flavors?

4Discrete time-varying data,
when time is mapped to a
spatial dimension

4Arbitrary entity-relationship
data (e.g., file structures)

4Arbitrary multi-dimensional
data (e.g., employment
statistics)

4Continuous mathematical
functions

4Continuous time-varying
data, when time is mapped to a
spatial dimension

ChosenConstraintGiven

4Distortions of given / discrete
ideas (e.g., 2D geographic
maps, fish-eye lens views)

4Arrangement of ordinal or
numeric variable values

4Segmented given /
continuous data (e.g.,
segmented images)

4Air traffic positions

4Molecular structures (exact
positions of components)

4Globe (entity data)

4Distortions of given /
continuous ideas (e.g., flattened
medical structures, 2D

4geographic maps, fish-eye
lens views)

4Arrangement of numeric
variable values

4Images (ie. Medical)

4Molecular structures
(distributions of mass, charge,
etc.)

4Globe (distribution data)
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CT, MRI, Ultrasound
Seismic

Visualization Pipeline
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Scanning - Domains

• Medical scanners (MRI, CT, SPECT, PET,
ultrasound)
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CT, MRI, Ultrasound
Seismic

Visualization Pipeline

Numerical Simulations
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Scientific Computation - Domain

• Mathematical analysis

• ODE/PDE (ordinary and partial
differential equations)

• Finite element analysis (FE),

• Supercomputer simulations,
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Scientific Computation - Apps

• Computational fluid dynamics (CFD),

• Computational field simulations (CFS),
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CT, MRI, Ultrasound
Seismic

Visualization Pipeline

Numerical Simulations

Surfaces
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Surfaces
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Volumes

CT, MRI, Ultrasound
Seismic

Numerical Simulations

Surfaces

Visualization Pipeline
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Overview

• What is SciVis?
• Acquisition Methods
• Iso-surfaces
• Direct-Rendering Pipeline
• Vector Visualization
• Challenges
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Acquisition Methods
• X-Rays
• Computer Tomography (CT or CAT)
• MRI (or NMR)
• PET / SPECT
• Ultrasound
• Computational
• Synthetic
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X-Rays
• photons produced by an electron beam

• similar to visible light, but higher energy!
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X-Rays - Images
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CT or CAT - Methods

• measures the attenuation of X-rays from many different
angles

• a computer reconstructs the organ under study in a series of
cross sections or planes

• combine X-ray pictures from various angles to reconstruct
3D structures

video
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CT - Beating Heart?

• Noise if body parts move!

• Heart - synchronize imaging
with heart beat
– can’t capture beating well

– need faster techniques

• Dynamic Spatial Reconstructor
– has 14 X-ray/camera pairs

– but turns slower

– 2D projections seem more plausible

– and cheaper

heart
beating

University Of Iowa
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MRI
• Nuclear Magnetic Resonance (NMR) (or Magnetic

Resonance Imaging - MRI)

• most detailed anatomical information

• high-energy radiation is not used, i.e. “save”

• based on the principle of nuclear resonance

• (medicine) uses resonance properties of protons
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MRI - Signal to Noise Ratio

• proton density pictures - measures H
MRI is good for tissues, but not for bone

• signal recorded in Frequency domain!!

• Noise - the more protons per volume unit, the
more accurate the measurements - better SNR
through decreased resolution

video
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PET/SPECT
• Positron Emission Tomography

Single Photon Emission Computerized Tomography

• recent technique

• involves the emission of particles of antimatter by
compounds injected into the body being scanned

• follow the movements of the injected compound and its
metabolism

• reconstruction techniques similar to CT - Filter Back
Projection & iterative schemes
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SPECT
• Emit (any) gamma rays

• collected with gamma camera

• cheap

video
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PET
• positrons collides with electron to emit photons in 1800 angle

• both annihilation photons detected in coincidence

• higher sensitivity

• more expensive

• tracer has shorter half-live

video
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Comparison

“CT and MRI show that
you have a brain;

PET and SPECT show
that you use it!”
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Ultrasound
• by far least expensive

• very safe

• very noisy

• 1D, 2D, 3D scanners

• irregular sampling -
reconstruction problems
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Comparison

CT

MRI

PET/SPECT
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safety

--

+

++

+++
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functional

borders
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30-60min

15-30min

immediate

quality

high

medium

low

bad
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Computational Methods (CM)
• Computational Field Simulations
• Computational Fluid Dynamics - Flow

simulations
• Computational Chemistry - Electron-

electron interactions, Molecular
surfaces

• Computational Mechanics - Fracture
• Computational Manufacturing - Die-

casting
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CM - Approach

• (Continuous) physical model
– Partial/Ordinary Differential Equation (ODE/PDE)
– e.g. Navier-Stokes equation for fluid flow
– e.g. Hosted Equations:
– e.g. Schrödinger Equation - for waves/quantum

• Continuous solution doesn’t exist (for most part)
• Numerical Approximation/Solution

1. Discretize solution space - Grid generation explicit
2. Replace continuous operators with discrete ones
3. Solve for physical quantities

bxaBbfAafxgfxx <<=== ,)(,)(:)(
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CM - Grid Types

regular rectilinearuniform curvilinear

Structured Grids:

regular irregular hybrid curved

Unstructured Grids:
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CM - Grid Examples
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CM - Solution Spaces

• desirable Grids:
– smooth grids
– non-folding grids

• time-varying (4D)
• vector data (as opposed to scalar data)
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Synthetic Methods
• 3D Discretization Techniques * Voxelization
• Scan Conversion of Geometric Objects

– Planes / Triangles
– Cylinders
– Sphere
– Cone
– NURBS, Bezier patches
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Synthetic Methods
• Solid Textures
• Hyper Texture - 3D

Textures
– Fur
– Marble
– Hair
– Turbulent flow

• 3D Regular grid has texture
values
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Volume Generation
• Capture original function accurately

– Sampling Theorems
– Sufficient resolution

• Should not create
– Noise - Medical
– Small Triangles - CAGD
– Flaws (Cracks) - CAGD

• For computational simulations
– capture geometry
– adapt to solution
– time varying, vector fields
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Overview

• What is SciVis?
• Acquisition Methods
• Iso-surfaces
• Direct-Rendering Pipeline
• Vector Visualization
• Challenges



April 7, 2004 51

Isosurface Extraction
• by contouring

– closed contours
– continuous
– determined by iso-value

• several methods
– marching cubes
– dividing cubes
– surface tracking
– span space 1 2 3 4 3

2 7 8 6 2

3 7 9 7 3

1 3 6 6 3

0 1 1 3 2

Iso-value=5



April 7, 2004 53

MC 1: Create a Cube
• Consider a Cube defined by eight data values:

(i,j,k) (i+1,j,k)

(i,j+1,k)

(i,j,k+1)

(i,j+1,k+1) (i+1,j+1,k+1)

(i+1,j+1,k)

(i+1,j,k+1)
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MC 2: Classify Each Voxel
• Classify each voxel according to whether it lies

outside the surface (value > iso-surface value)
inside the surface (value <= iso-surface value)

8
Iso=7

8

8

55

1010

10

Iso=9

=inside
=outside
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MC 3: Build An Index
• Use the binary labeling of each voxel to create an index

v1 v2

v6

v3v4

v7v8

v5

inside =1
outside=0

11110100

00110000
Index:

v1 v2 v3 v4 v5 v6 v7 v8



April 7, 2004 56

MC 4: Lookup Edge List
• For a given index, access an array storing a list of edges

4 all 256 cases can be derived from 15 base cases
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Ambiguous Cases
• Ambiguous cases:

3, 6, 7, 10, 12, 13
• Adjacent vertices:

different states
• Diagonal vertices:

same state
• Resolution:

decide for one case

or

or
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Isosurface Extraction
• MC

– Most popular one
– There are faster ones
– Not as simple to program

• Isosurface rendering
doesn’t really show
“thickness” of features etc.

1 2 3 4 3

2 7 8 6 2

3 7 9 7 3

1 3 6 6 3

0 1 1 3 2

Iso-value=5
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Overview

• What is SciVis?
• Acquisition Methods
• Iso-surfaces
• Direct-Rendering Pipeline
• Vector Visualization
• Challanges
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What Now?
• Know how to get a volume!
• How can we make it visible?

Volumes

CT, MRI, Ultrasound
Seismic

Numerical Simulations

Surfaces
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Rendering Pipeline (RP)
• Transform
• Classify
• Shading
• Interpolation
• Composite
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Rendering Pipeline (RP)

Transform



April 7, 2004 66

Transformation
• Affine: rotate +

scale +
translate

• expressed in
matrix form

• homogenous
coordinates

Object space World space

Clip space Screen space
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Rendering Pipeline (RP)

Transform

Classify
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Classification
• original data set acquires application specific

scalars/vectors (temperature, velocity, proton density etc.)
• make sense of / explore given data set
• assign material properties (surface graphics)
• assign color/opacity value, that guide visualization
• achieved through transfer functions
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Transfer Functions (TF’s)
• Transfer functions make volume data visible
• by mapping data values to optical properties

8 140140

slices: volume rendering:volume data:

Gordon Kindlmann
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Transfer Functions (TF’s)
• Simple (usual) case: Map

data value f  to color and
opacity

Human Tooth CT

a(f)RGB(f)

f 

RGB

Shading,
Compositing…

a

Gordon Kindlmann
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TF’s
• Setting transfer functions is difficult, unintuitive,

and slow

f

a

f

a

f

a

f

a

Gordon Kindlmann
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Goals
• Make good renderings easier to come by

• Make space of TFs less confusing

• Remove excess “flexibility”

• Provide one or more of:

– Information

– Guidance

– Semi-automation

– Automation

Gordon Kindlmann
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Classification - Vector
• Scalar data sets: typically color lookup
• Vector data sets: be creative

– glyphs
– streamlines / streaklines / particle methods
– line bundles
– spot noise
– line integral convolution (LIC)
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Classification - Vector (2)
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Rendering Pipeline (RP)

Transform

Classify

Shade
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Light Effects
• Usually only considering

reflected partLight

absorbed

transmitted

reflected

Light=refl.+absorbed+trans.

Light

ambient

specular

diffuse

ssddaa IkIkIkI ++=

Light=ambient+diffuse+specular
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Rendering Pipeline (RP)

Transform

Classify

Shade

Interpolate
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Interpolation

• Given:

4 Needed:

2D 1D
4 Given:

4 Needed:
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Interpolation (summary)
• Very important; regardless of algorithm
• expensive => done very often for one image
• Requirements for good reconstruction

– performance
– stability of the numerical algorithm
– accuracy

Nearest
neighbor

Linear
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Rendering Pipeline (RP)

Transform

Classify

Shade

Interpolate

Composite
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Semi -Transparent - How?
• Radiative transport

theory
• model the interaction

of light with the
material

observer

light

Emission(+)
Scattering(+)
Absorption(-)

Transport of Light
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Semi -Transparent - How?
• Rendering Integral

(Sabella, Max, …)

( ) ( )Ú a-=
t

t

s dsesctI
0

)(

( )Úr=a
s

t

duuks
0

)(

t0 t1t

C(t): shade
a(t): opacity
r(t): “density”

4 Discretize Integral!!
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Compositing (2)
Front-To-Back Back-To-Front

Object order

Image order
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Rendering Pipeline (RP)

Transform

Classify

Shade

Interpolate

Composite
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Ray Tracing
• “another” typical method from traditional graphics
• Typically we only deal with primary rays -

hence: ray-casting
• a natural image-order technique
• as opposed to surface graphics - how do we calculate the

ray/surface intersection???
• Since we have no surfaces - we need to carefully step

through the volume
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Ray Traversal Schemes

Depth

Intensity
Max

Average

Accumulate
First
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Ray Traversal - First

Depth

Intensity

First

• First: extracts iso-surfaces (again!)
done by Tuy&Tuy ’84
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Ray Traversal - Average

Depth

Intensity

Average

• Average: produces basically an X-ray picture
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Ray Traversal - MIP

Depth

Intensity
Max

• Max: Maximum Intensity Projection
used for Magnetic Resonance Angiogram
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Ray Traversal - Accumulate

Depth

Intensity

Accumulate

• Accumulate: make transparent layers visible!
Levoy ‘88
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Volumetric Ray Integration

color

opacity

object (color, opacity)

1.0
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Raycasting

color

opacity

1.0

volumetric compositing

object (color, opacity)
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Raycasting

color

opacity

Interpolation
kernel

1.0

object (color, opacity)

volumetric compositing
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Raycasting

color c = c s as(1 - a) + c

opacity a = a s (1 - a) + a

1.0

object (color, opacity)

volumetric compositingInterpolation
kernel
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Raycasting

color

opacity

1.0

object (color, opacity)

volumetric compositing
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Raycasting

color

opacity

1.0

object (color, opacity)

volumetric compositing
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Raycasting

color

opacity

1.0

object (color, opacity)

volumetric compositing
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Raycasting

color

opacity

1.0

object (color, opacity)

volumetric compositing
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Raycasting

color

opacity

object (color, opacity)

volumetric compositing
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Overview

• What is SciVis?
• Acquisition Methods
• Iso-surfaces
• Direct-Rendering Pipeline
• Vector Visualization
• Challenges
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Flow Visualization - traditionally

• Traditionally - Experimental Flow Vis
• purpose:

– get an impression of flow around a scale model
of a real object

– as a source of inspiration for the development
of new and better theories

– to verify a new theory or model
video
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Flow Visualization - How
• How is it done?
• three basic techniques:

– adding foreign material
– optical techniques
– adding heat and energy
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Flow Visualization - Examples
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Flow Visualization - add material

• Time Lines:
• lines, that once released in the fluid, are moved

and transformed by the flow. The motion and
formation of the line, which is often released
perpendicular to the flow, shows the flow.

• Practice - often consist of row of small particles,
such as hydrogen bubbles.
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Flow Visualization - add material

• Streak Lines:
• arises when dye is injected in the flow from a

fixed position.
• Practice -Injecting the dye for a period of time

gives a line of dye in the fluid, from which the
fluid flow can be seen.
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Flow Visualization - add material

• Path Lines or Streamlines:
• is the path of a (massless) particle in the fluid.

Imagine a light emitting particle in the flow. A
path line is obtained when a photographic plate is
exposed for several seconds.

• Steady flows - path and streak lines are identical
to stream lines - lines that are everywhere
tangent to the velocity field.



April 7, 2004 129

Mappings - compare
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Flow Visualization - add material

• Flow on a surface:
• fix tufts (small threads) at several points

on the surface or
• coat the surface with viscous material (oil)
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Mappings - Hedgehogs, Glyphs
• Put “icons” at certain

places in the flow
• e.g. arrows - represent

direction & magnitude
• other primitives are

possible
oriented
lines

glyphs

vortex
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Mappings - Hedgehogs, Glyphs
• analogous to tufts or vanes from

experimental flow visualization
• clutter the image real quick
• maybe ok for 2D
• not very informative
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Mappings - Streak-lines
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Mappings - Streamlines
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Mappings - Contours
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Mappings - Stream-ribbon
• We really would like to see vorticities, I.e. places

were the flow twists.
• A point primitive or an icon can hardly convey this
• idea: trace neighboring particles and connect them

with polygons
• shade those polygons appropriately and one will

detect twists
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Mappings - Stream-ribbon
• Problem - when flow diverges
• Solution: Just trace one streamline and a

constant size vector with it:
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Mappings - Stream-tube
• Generate a stream-line and connect circular

crossflow sections along the stream-line
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Mappings - Stream-balls
• Another way to get around diverging

stream-lines
• simply put implicit surface primitives at

particle traces - at places where they are
close they’ll merge elegantly ...

video
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Mappings - Flow Volumes
• Instead of tracing a line - trace a small

polyhedra



April 7, 2004 141

Data Preparation - Tensors
• Hyper-streamlines:

– look at eigen-values and eigen-vectors of tensor
– visualize streamlines for one of the eigenvectors
– use a geometric primitive that sweeps along that

streamline
– major, medium, and minor

hyper-streamlines
– depending on the magnitude of

the eigenvector

• collection:
– “critical” points (global) when one of

the eigenvalues is zero
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Data Preparation - Topology
• Finding “critical” points
• what is critical in a flow?
• Well - when it doesn’t flow anymore!
• I.e - critical points are places without change:

v = 0!
• Try to

– find these places
– classify them
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Data Preparation - Topology
• 2D classification (and higher D):
• according to eigen-values of derivative matrix

Attracting
 node

saddle

Repelling
 focus

r

i

r

r
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Data Preparation - Topology
• 3D classification
• more complicated

node

saddle

Spiral
Saddle

r

i

r

r
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Rendering - LIC
• Similar to spot

noise
• underlying a noise

texture under the
vector field

• difference -
integrates along a
streamline

LIC Spot Noise
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Rendering - LIC
• DDA convolution:
• translates each vector

into a straight line
(DDA line drawing)

• multiplies each pixel
with a texture intensity
to come up with a new
value for the pixel
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Rendering - LIC
• Compute a local

stream line of a pre-
determined size

• integrate the noise
texture along that
streamline
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LIC - Normalization
• We need to

normalize
by the sum
of the filter
weights

No normalization
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LIC
• Aliasing can be a

problem
• hence low-pass

noise!
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LIC - Image Processing
• We can apply a vector field to an image to

change the image
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Overview

• What is SciVis?
• Acquisition Methods
• Iso-surfaces
• Direct-Rendering Pipeline
• Vector Visualization
• Challenges



April 7, 2004 153

Challenges - Accuracy

• Analysis of rendering pipeline
• Need metrics -> perceptual metric

(a) Original (b) Bias-Added (c) Edge-Distorted
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Challenges - Accuracy
• Deal with unreliable data (noise, Ultrasound)
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Challenges - Accuracy
• Irregular data sets

regular rectilinearuniform curvilinear

Structured Grids:

regular irregular hybrid curved

Unstructured Grids:
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Challenges - Speed/Size

• Efficient algorithms
• Hardware developments (VolumePro)
• Utilize current hardware (nvidia, ATI)
• Compression schemes
• Tera-byte data sets
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Challenges - HCI
• How to explore

data set?
• Identify regions

of interest
quickly
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Challenges - HCI
• “Augmented” reality
• Explore novel I/O devices
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Tera-Scale Visualization

• Time-varying multi-modal data sets
• Common in engineering problems
• Accuracy - irregular data sets
• Speed - compression/supercomputers
• HCI - Regions of interests
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Still Questions?

torsten@cs.sfu.ca

http://gruvi.cs.sfu.ca/


